- •10 Июня 2010 г., протокол № 9
- •Введение
- •История развития авиационной метеорологии Авиационная метеорология – прикладная наука метеорологии.
- •Этапы развития авиационной метеорологии
- •Перспективы развития метеорологического обеспечения полетов
- •2. Требования к организации метеорологического обеспечения аэронавигации
- •2.1. Организация метеорологического обеспечения гражданской авиации Авиационные метеорологические службы
- •Функции авиационной метеорологической службы
- •Взаимодействие с авиационными службами
- •Проведение наблюдений за метеорологической дальностью видимости, нижней границей облаков, температурой и влажностью воздуха, атмосферным давлением, явлениями погоды
- •3.1. Измерение метеорологической дальности видимости
- •3.2. Измерение нижней границы облаков.
- •3.3. Измерение атмосферного давления
- •3.4. Измерение скорости и направления ветра
- •3.5. Измерение температуры и влажности воздуха
- •Подъемная сила
- •Понятие о сжимаемости воздуха
- •Горизонтальный полет
- •Понятие о потолках воздушных судов
- •Этапы взлета и посадки воздушных судов
- •Планирование самолета
- •Основы конструкции воздушных судов
- •3.2. Классификация воздушных судов и аэродромов гражданской авиации Классификация воздушных судов
- •Основные характеристики самолетов
- •Основные характеристики вертолетов
- •Элементы аэродрома
- •Оборудование воздушных судов и аэродромов навигационными системами и приборами
- •3.3. Организация полетов гражданской авиации Классификация полетов гражданской авиации
- •Основы самолетовождения (воздушной навигации)
- •Организация воздушного движения
- •Эшелонирование полетов
- •Единая система организации воздушного движения
- •4. Влияние метеорологических элементов и условий погоды на полеты воздушных судов
- •4.1. Влияние температуры и атмосферного давления на полеты воздушных судов Стандартная атмосфера и ее назначение
- •Влияние температуры и давления на показания барометрического высотомера, указателя воздушной скорости
- •Влияние температуры и давления на аэродинамические характеристики воздушных судов, тягу двигателей и расход топлива
- •Влияние температуры и давления на взлет и посадку воздушных судов, скорость подъема и потолок самолета
- •4.2. Влияние ветра на полеты воздушных судов Влияние ветра на путевую скорость и дальность полета
- •Влияние ветра на взлет и посадку
- •Струйные течения и их аэронавигационное значение
- •4.3. Турбулентность атмосферы Причины турбулентности атмосферы
- •Глава 8
- •Влияние турбулентности на полеты воздушных судов Болтанка самолетов
- •8.2, Влияние турбулентных пульсаций на воздушное судно. Болтанка самолетов
- •Содержание кода Группа состояния впп Авиационная специальная сводка погоды (speci)
- •4.3. Прогнозы для посадки
- •4.4. Прогнозы для взлета
- •Содержание кода Информация об опасных для авиации явлениях и условия погоды – sigmet, airmet Содержание sigmet и airmet
- •4.5.2. Принятые сокращения
- •6. Метеорологическое обеспечение полетов воздушных судов Метеорологическое обеспечение членов летного экипажа Метеорологическое обеспечение органов обслуживания воздушного движения
- •Метеорологическое обеспечение органов поисково-спасательной службы
- •Метеорологическое обеспечение органов службы аэронавигационной информации
- •Литература
- •Содержание
Влияние температуры и давления на взлет и посадку воздушных судов, скорость подъема и потолок самолета
Перед взлетом самолет выруливает на взлетную полосу, останавливается, а затем, получив разрешение диспетчера старта, начинает разбег по ВПП. Самолет взлетит тогда, когда при разбеге его скорость станет равна скорости отрыва, т.е.
Vотр =√ 2G/ сy отрS ρ. (6.14)
Очевидно, что раз в формуле есть плотность воздуха ρ, то любые изменения температуры и давления, приводящие к уменьшению плотности, увеличивают скорость отрыва. Это, в свою очередь, увеличивает длину разбега самолета. Для определения длины разбега в любых условиях можно воспользоваться формулой
Lразб,ф = Lразб.са /3, (6.15)
где Lразб,ф - фактическая длина разбега самолета, Lразб.са - длина разбега самолета в стандартных условиях, а = ρ0,ф ρ0,СА - соотношение фактической и стандартной плотности воздуха у земли.
Простые расчеты показывают, что увеличение температуры воздуха на 1° приводит к увеличению длины разбега на 1%, а увеличение атмосферного давления на 1% приводит к уменьшению длины разбега на 2%,
Аналогичные процессы происходят и при посадке ВС. Так, при увеличении температуры воздуха и уменьшении давления (уменьшении плотности) посадочная скорость самолетов увеличивается, а следовательно, увеличивается и длина пробега. Фактическую длину пробега самолета при любой температуре можно определить по формуле
Lпроб,ф = Lпроб.са (0,95 + 0,0031t), (6.16)
где t - температура воздуха, °С; Lпроб,ф и Lпроб.са - фактическая и стандартная длина пробега соответственно.
Установлено, что изменение температуры воздуха на 3° изменяет посадочную скорость на 1 км/ч, что соответствует изменению массы самолета на 250-300 кг.
Увеличение плотности воздуха приводит к увеличению тяги двигателя, а следовательно, и к увеличению потолка самолета. Величина фактического потолка ВС может быть определена по следующей формуле:
Н пот..ф = Н пот..са - (760 - р о.,ф) 10 - (Ттроп..ф - Ттроп.са)80, (6.17)
где Н пот..ф , Н пот..са - высота потолка самолета фактическая и в стандартных условиях соответственно; р о,.ф - фактическое давление воздуха у земли, мм рт. ст.; Ттроп..ф и Ттроп.са - фактическая и стандартная температура тропопаузы соответственно.
Иногда последнее выражение записывают несколько иначе, определяя по формуле не потолок самолета, а его отклонение от стандартного значения, В этом случае выражение (6.17) принимает вид:
Н пот. = Н пот..ф - Н пот..са = (р о.,ф - 760) 10 - (Ттроп..ф - Ттроп.са)80. (6.18)
Анализируя формулу (б.18), легко убедиться в том, что повышение давления у земли и понижение температуры на высоте полета (и то, и то приводит к увеличению плотности воздуха, а, следовательно, и тяги двигателя) являются теми причинами, из-за которых потолок самолета может быть выше стандартного значения. Из этой же формулы видно, что влияние температуры на изменение потолка самолета примерно на порядок больше, чем влияние атмосферного давления у земли. Поэтому для определения потолка самолета иногда пользуются упрощенной формулой
Н пот = к ТН (6.19)
где к - коэффициент, зависящий от типа самолета и показывающий, на сколько метров изменится потолок при изменении температуры на 1°; ТН - отклонение температуры воздуха от стандартного значения на высоте потолка самолета.
Коэффициент к измеряется в м/град и равен для Ту-134 (-40), для Ту-154 -(-55), для Ил-62 - (-100) и для Ил-86 - (-130).
Имеет свои особенности определение потолка сверхзвуковых самолетов. Как известно, выполнять полеты на сверхзвуковой скорости на высотах ниже 10 000 м запрещено. Поэтому самолет сначала на дозвуковом режиме набирает высоту 10 000-11 000 м, затем летчик в горизонтальном полете разгоняет самолет до сверхзвуковой скорости и только после этого снова переводит самолет на режим набора высоты. Используя инерцию разгона и свои аэродинамические качества, самолет или попадает в область динамических высот, или набирает заданную высоту полета (рис. 6.4).
Рис. 6.4. Траектория полета сверхзвукового самолета при полете на потолок.
Совершенно очевидно, что стратосферный самолет всегда наберет высоту 10 000-11 000 м (высоту разгона), а на его потолок будет оказывать влияние, в основном, только распределение температуры воздуха в слое от высоты разгона до потолка (рис. 6.5).
Рис. 6.5. К определению потолка сверхзвукового самолета.
На рис. 6.5 приведены три возможных варианта распределения температуры воздуха в слое от высоты разгона до потолка. Естественно, что в первом случае, при котором температура воздуха продолжает понижаться (плотность воздуха уменьшается медленнее, чем в двух других случаях), потолок самолета будет самым высоким. Следовательно, можно в слое от высоты разгона самолета до его потолка найти такую высоту, на которой температура будет характеризовать общие температурные условия набора высоты во всем этом слое. Если учесть, что разгон производится на высотах 10 000-11 000 м, а потолок самолетов близок к 20 000 м, то такой «реперной» высотой может служить высота поверхности 100 гПа (это около 16 км). Эта высота удобна еще и тем, что информация о температуре на уровне 100 гПа всегда есть в данных температурно-ветрового зондирования атмосферы. Поэтому мы можем построить график зависимости потолка самолета от температуры воздуха на уровне 100 гПа и конечной скорости разгона. Образец такого графика приведен на рис. 6.6.
Рис. 6.6. График зависимости потолка самолета от температуры на уровне 100 гПа
и конечной скорости разгона.
Пользование последним графиком дополнительных пояснений не требует и дает преимущества перед другими методами определения потолка.
