- •Лекция 9. Дифференциальные уравнения первого порядка
- •9.1. Понятие дифференциального уравнения и его решения
- •9.2. Дифференциальные уравнения первого порядка с разделяющимися переменными
- •9.3. Однородные дифференциальные уравнения
- •9.4. Линейные дифференциальные уравнения первого порядка
- •9.5. Дифференциальные уравнения Бернулли
- •Лекция 10. Линейные дифференциальные уравнения второго порядка
- •10.1. Дифференциальные уравнения второго порядка
- •10.2. Дифференциальные уравнения второго порядка, которые допускают понижение порядка
- •Лекция 11. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •11.1. Однородные уравнения второго порядка с постоянными коэффициентами
- •Частные решения неоднородного уравнения
- •Лекция 12. Системы дифференциальных уравнений
- •12.2. Методы решения системы дифференциальных уравнений
- •Лекция 13. Числовые ряды
- •13.1. Частные суммы ряда. Необходимое условие сходимости ряда
- •Ряд геометрической прогрессии
- •Гармонический ряд
- •13.2. Достаточные признаки сходимости рядов с положительными членами: признак сравнения, Даламбера, Коши, интегральный признак Маклорена – Коши
- •Признак сравнения
- •Признак Даламбера
- •Радикальный признак Коши
- •Интегральный признак Маклорена – Коши
- •Лекция 14. Знакопеременные ряды.
- •14.1. Абсолютная и условная сходимость рядов
- •14.2. Знакочередующиеся ряды. Теорема Лейбница
- •Лекция 15. Степенные ряды
- •15.1. Теорема Абеля. Радиус сходимости степенного ряда
- •Лекция 16. Ряды Тейлора и Маклорена
- •16.1. Разложение элементарных функций в ряды Тейлора и Маклорена
- •16.2. Применение степенных рядов степеней в приближенных вычислениях
- •Вычисление с помощью знакочередующихся рядов
- •Вычисление с помощью знакоположительных рядов
- •Лекция 17. Элементы финансовой математики
- •17.1. Общие положения финансовой математики
- •17.2. Наращение по простой процентной ставке
- •17.2. Дисконтирование и учет по простым процентным ставкам
- •17.3. Сложные проценты
16.2. Применение степенных рядов степеней в приближенных вычислениях
В приближенных вычислениях степенные ряды играют исключительно большую роль. С их помощью составлены таблицы тригонометрических функций, таблицы логарифмов, таблицы значений других функций, которые используют в разных областях знаний, например в теории вероятностей и математической статистике. Кроме того, разложение функций в степенной ряд полезно для их теоретического исследования. Главным вопросом при использовании степенных рядов в приближенных вычислениях является вопрос оценки погрешности при замене суммы ряда суммой его первых n членов.
Рассмотрим два случая:
функция разложена в знакочередующийся ряд;
функция разложена в знакопостоянный ряд.
Вычисление с помощью знакочередующихся рядов
Пусть функция
разложена в знакочередующийся степенной
ряд. Тогда при вычислении этой функции
для конкретного значения
получаем числовой ряд, к которому можно
применить признак Лейбница. В соответствии
с этим признаком, если сумму ряда заменить
суммой его первых n членов, то
абсолютная погрешность не превышает
первого члена остатка этого ряда, то
есть:
.
Пример 8.
Вычислить
с точностью до 0,0001.
Решение.
Будем использовать ряд Маклорена для , подставив значение угла в радианах:
Если сравнить первый
и второй члены ряда с заданной точностью,
то:
.
Третий член разложения:
,
меньше
заданной точности вычисления.
Следовательно, для вычисления
достаточно оставить два члена ряда, то
есть
.
Таким образом
.
Пример 9.
Вычислить
с точностью 0,001.
Решение.
Будем использовать
формулу биномиального ряда. Для этого
запишем
в виде:
.
В этом
выражении
,
Сравним каждый из
членов ряда с точностью, которая задана.
Видно, что
.
Следовательно, для вычисления
достаточно оставить три члена ряда.
или
.
Вычисление с помощью знакоположительных рядов
Пример 10.
Вычислить число
с точностью до 0,001.
Решение.
В ряд для функцїї подставим . Получим:
Оценим погрешность,
которая возникает при замене суммы ряда
суммой первых
членов. Запишем очевидное неравенство:
,
то есть
2<
<3.
Используем формулу остаточного члена
ряда в форме Лагранжа:
,
.
По
условию задачи нужно найти n
такое, чтобы выполнялось неравенство:
или
.
Легко проверить, что
при n =
6:
.
Следовательно,
.
Отсюда
Пример 11.
Вычислить
с точностью 0,0001.
Решение.
Заметим, что для
вычисления логарифмов можно было бы
применить ряд для функции
,
но этот ряд очень медленно сходится и
для достижения заданной точности нужно
было бы взять 9999 членов! Поэтому для
вычисления логарифмов, как правило,
используется ряд для функции
,
который сходится на интервале
.
Вычислим
с помощью этого ряда. Пусть
,
тогда
.
Следовательно,
,
или
.
Для того, чтобы вычислить
с заданной точностью, возьмем сумму
первых четырех членов:
.
Остаток
ряда
отбросим. Оценим погрешность. Очевидно,
что
или
.
Отсюда
Таким образом, в ряду, который был использован для вычисления, достаточно было взять только четыре первые слагаемые вместо 9999 в ряду для функции .
Лекция 17. Элементы финансовой математики
