- •18 Кинетика ферментативных реакций
- •19 Классификация и номенклатура ферментов
- •20 Эндергонические и экзергонические реакции
- •21 Строение митохондрий Наружная мембрана
- •23 Биохимия питания
- •24 Витамины
- •27 Цикл лимонной кислоты
- •29 Основные углеводы животных
- •30 Аэробный гликолиз
- •31 Биосинтез глюкозы из аминокислот
- •32 Гликоген
- •33 Анаэробный гликолиз
- •34 Липиды
- •35 Переваривание липидов биохимия
- •37 Распад жирных кислот в клетке
- •38 Кетоновые тела биосинтез
- •39 Биосинтез жирных кислот
- •40 Холестерин
- •41 Липопротеины плазмы крови
- •42 Липидный состав мембран
- •43 Биологические мембраны
- •44 Механизм переноса веществ через мембрану
- •45 Переваривание белков
- •48 Метаболизм аминокислот
- •49 Источники аммиака в организме
- •50 Орнитиновый цикл мочевинообразования
- •51 Обмен фенилаланина и тирозина
- •53 Декарбоксилирование аминокислот
- •54 Биосинтез гема
- •55 Распад гема ----
- •57 Образование активных форм кислорода
- •59 Биосинтез и распад пиримидиновых нуклеотидов
- •61 Первичная структура нуклеиновых кислот
- •62 Репликация
- •63 Транскрипция
- •64 Генетический код
- •65 Сборка полипептидной цепи на рибосоме
- •66 Особенности синтеза и процессинга секретируемых белков( коллаген и инсулина)
- •67 Клетки мишени
- •70 Классификация гормонов
67 Клетки мишени
Клетка-Мишень - (в гематологии) аномальная красная клетка крови (эритроцит), внутри которой при окрашивании образца крови наблюдаются сменяющие друг друга темные и светлые кольца. Существование клеток-мишеней в крови наблюдается при некоторых видах анемий, в том числе и при железодефицитной анемии, заболеваниях печени и нарушениях в структуре гемоглобина.
G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену GDP на GTP как молекулярный функциональный «выключатель» для регулировки клеточных процессов.
ипы G-белков
G-белки делятся на две основных группы — гетеротримерные («большие») и «малые». Гетеротримерные G-белки — это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки — это белки из одной полипептидной цепи, они имеют молекулярную массу 20—25 кДа и относятся к суперсемейству Ras малых ГТФаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков. Обе группы G-белков участвуют во внутриклеточной сигнализации.
[править]
Гетеротримерные G-белки
У всех гетеротримерных G-белков сходный механизм активации: они активируются при взаимодействии со специфическими рецепторами, сопряженными с G-белками, при этом обменивая ГДФ на ГТФ и распадаясь на α- и βγ-субъединицы. α-субъединица, связанная с ГТФ, воздействует на следующее звено в цепи передачи сигнала. βγ-субъединица также может вызывать собственные эффекты. Инактивация G-белков происходит в результате медленного гидролиза ГТФ до ГДФ α-субъединицей, после чего происходит реассоциация (объединение) субъединиц.
[править]
Белки-помощники G-белков
В работе многих G-белков участвуют вспомогательные белки. GAPs (GTPase Activating Proteins, белки-активаторы ГТФазной активности) ускоряют гидролиз ГТФ, ускоряя инактивацию G-белков. Особенно важна функция GAPs для малых G-белков, так как альфа-субъединицы гетеротримерных G-белков часто сами обладают достаточной ГТФ-азной активностью. К GAP-белкам относятся белки семейства RGS.
GEFs (Guanine nucleotide Exchange Factors, факторы обмена гуаниловых нуклеотидов), ускоряют обмен ГДФ на ГТФ и таким образом активируют G-белки. Обычно для G-белка GEF-ом служит активированный лигандом рецептор, однако в некоторых случаях белки AGS (Activator of G-protein Signaling, активаторы передачи сигнала G-белками) могут активировать G-белок независимо от воздействия на него рецептора.
68-
69-
70 Классификация гормонов
Химическая природа почти всех известных гормонов выяснена в деталях (включая первичную структуру белковых и пептидных гормонов), однако до настоящего времени не разработаны общие принципы их номенклатуры. Химические наименования многих гормонов точно отражают их химическую структуру и очень громоздкие. Поэтому чаще применяются тривиальные названия гормонов. Принятая номенклатура указывает на источник гормона (например, инсулин – от лат. insula – островок) или отражает его функцию (например, пролактин, вазопрессин). Для некоторых гормонов гипофиза (например, лютеинизирующего и фолликулостимулирующего), а также для всех гипоталамических гормонов разработаны новые рабочие названия.
Аналогичное положение существует и в отношении классификации гормонов. Гормоны классифицируют в зависимости от места их природного синтеза, в соответствии с которым различают гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы и др. Однако подобная анатомическая классификация недостаточно совершенна, поскольку некоторые гормоны или синтезируются не в тех железах внутренней секреции, из которых они секретируются в кровь (например, гормоны задней доли гипофиза, вазопрессин и окситоцин синтезируются в гипоталамусе, откуда переносятся в заднюю долю гипофиза), или синтезируются и в других железах (например, частичный синтез половых гормонов осуществляется в коре надпочечников, синтез простагландинов происходит не только в предстательной железе, но и в других органах) и т.д. С учетом этих обстоятельств были предприняты попытки создания современной классификации гормонов, основанной на их химической природе. В соответствии с этой классификацией различают три группы истинных гормонов: 1) пептидные и белковые гормоны, 2) гормоны – производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды – гормоноподоб-ные вещества, оказывающие местное действие.
Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тироли-берин, соматолиберин, соматостатин, гормон роста, кортикотропин, тире-отропин и др. – см. далее), а также гормоны поджелудочной железы (инсулин, глюкагон). Гормоны – производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде.
Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды), половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D.
Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой), представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают свое действие на клетки, находящиеся вблизи их места синтеза.
Далее будут рассмотрены химическое строение, функции и пути биосинтеза и распада основных классов гормонов, подразделяющихся на отдельные группы в соответствии с классификацией, в основе которой лежит химическая природа гормонов.
