
- •1.Объясните физический смысл понятий: абсолютное гидростатическое давление в жидкости, весовое давление, манометрическое и вакуумметрическое давление, давление насыщенного пара.
- •2.В чем различие между плотностью и объемным весом?
- •4.Что представляет собой коэффициент температурного расширения?
- •Кинематическая вязкость
- •Для всех жидкостей характерно, что с увеличением температуры вязкость их уменьшается, а с увеличением давления увеличивается. Вязкость жидкости измеряют приборами, называемыми визкозиметрами.
- •6.Что называют гидростатическим давлением? в каких единицах его выражают? Каковы основные свойства гидростатического давления?
- •7.Чем отличается идеальная жидкость от реальной? в каких случаях при практических расчетах жидкость можно считать идеальной?
- •8.Как определить гидростатическое давление в точке объема неподвижной жидкости?
- •9.Почему при определении силы давления жидкости на поверхность чаще всего оперируют не абсолютным, а манометрическим давлением или вакуумом?
- •10.Принципы измерения давления в жидкости. Формулы связи между показаниями приборов и абсолютным давлением.
- •11.Как определить силу давления жидкости на плоскую поверхность?
- •1 2.Что называют абсолютным давлением, манометрическим, вакуумом?
- •13.Что называется давлением насыщенного пара жидкости?
- •14.В каких единицах выражают плотность, объемный вес, коэффициенты температурного расширения и объемного сжатия, объемный модуль упругости, динамический и кинематический коэффициенты вязкости?
- •16. Что такое центр давления? Когда центр давления плоской фигуры совпадает с ее центром тяжести?
- •17.Основные законы гидростатики: закон Гука, закон Паскаля, закон сохранения энергии (основное уравнение гидростатики), закон Архимеда.
- •18.Сформулируйте условия плавания тел.
- •19.Гипотеза сплошности среды.
- •Силы, действующие на частицы в сплошной среде: массовые и поверхностные силы.
- •Ньютоновские и неньютоновские жидкости.
- •Идеальная и вязкая жидкости.
- •Гидравлические характеристики потока. Расход и средняя скорость.
- •Поток как совокупность элементарных струек. Понятие о линии тока и элементарной струйке.
- •Уравнение Бернулли для потока реальной жидкости. Что представляет собой коэффициент α и что он учитывает?
- •Как определить положение пьезометрической плоскости при известной величине избыточного давления над свободной поверхностью жидкости?
- •Какие силы действуют на жидкость в случаях абсолютного и относительного покоя?
- •Объясните физический смысл понятий: вязкость жидкости, местная и средняя скорость, расход (объемный, массовый и весовой), смоченный периметр.
- •Объясните физический смысл понятий: энергия – полная, удельная, кинетическая, потенциальная энергия положения, потенциальная энергия давления, работа, разница между энергией и работой.`
- •Объясните физический смысл понятий: динамический и кинематический коэффициенты вязкости, вязкость пластическая и эффективная, ньютоновские и неньютоновские жидкости, вязкопластичная жидкость.
- •Сформулируйте закон сохранения массы при движении жидкости и газа. В каком случае закон сохранения массы эквивалентен закону сохранения объёмного расхода?
- •Напишите уравнение Бернулли для идеальной и реальной жидкости в виде:
- •Как определить режим движения ньютоновской жидкости? Вязкопластичной жидкости?
- •Каков физический смысл числа Re?
- •Почему критическое число Reкр в вязкопластичной жидкости меньше, чем в ньютоновской?
- •От каких факторов зависит коэффициент гидравлического трения при ламинарном режиме? При турбулентном режиме?
- •Запишите дифференциальные уравнения гидростатики в векторной форме и в проекциях и объясните физический смысл входящих в них величин.
- •Что такое гидравлический и пьезометрический уклоны? Каковы их знаки?
- •Уравнения Бернулли для элементарной струйки идеальной и реальной жидкости
- •Что такое установившееся и неустановившееся движение? Чем отличается движение идеальной жидкости от движения реальной жидкости?
- •Геометрическая и физическая сущность уравнения Бернулли.
- •Принцип действия гидравлического пресса.
- •Основные элементы потока: живое сечение, расход, средняя скорость, смоченный периметр.
- •Элементарная струйка и ее свойства при установившемся движении.
- •Как определить положение пьезометрической плоскости при известной величине избыточного давления над свободной поверхностью жидкости?
- •Что показывает коэффициент объемного сжатия жидкости? Какова его связь с модулем упругости?
- •Как формулируется закон Паскаля и какова его связь с основным уравнением гидростатики?
- •Укажите физический смысл величин, входящих в дифференциальные уравнения Эйлера гидродинамики.
- •Дайте определения основных понятий гидродинамики (линия тока, траектория движения, трубка тока, элементарная струйка, живое сечение, смоченный периметр, гидравлический радиус, средняя скорость).
- •63)Коэффициент местного сопротивления. От каких факторов он зависит? Их виды.
- •64)Внезапное расширение потока. Теорема Борда–Карно.
- •6 5)Внезапное сужение потока.
- •66)Ламинарное течение жидкости. Закон Пуазейля.
- •67)Гидравлические потери в диффузоре, конфузоре и при повороте потока.
- •68)Расчёт последовательного соединения трубопроводов.
- •69)Расчёт параллельного соединения трубопроводов.
- •70)Методика расчёта разветвлённых трубопроводов.
- •71)Особенности расчета гидравлически длинных трубопроводов.
- •72)Особенности расчета гидравлически коротких трубопроводов.
- •74)Особенности расчёта последовательного соединения трубопроводов.
- •75)Расчёт разветвлённых трубопроводов.
- •76)Общие сведения о расчете сложных трубопроводов.
- •77)Истечение жидкости через малое отверстие в тонкой стенке.
- •78)Истечение жидкости через насадки.
- •79)Виды насадков. Физические явления при прохождении жидкости внутри насадка.
- •80)Коэффициент сжатия, коэффициент скорости, коэффициент расхода. Связь между ними.
- •81)Истечение жидкости при несовершенном сжатии.
- •82)Истечение жидкости под уровень.
- •83)Истечение жидкости через насадки при постоянном напоре.
- •84)Дроссельные расходомеры. Трубка Вентури.
- •85)Основное понятие кавитации.
- •86)Негативные последствия кавитации.
- •87)Определение расхода и скорости при истечении жидкости. Сравнение истечения через отверстия и насадки различных типов.
- •88)Всасывающий эффект насадка. Кавитация в насадке.
- •89)Гидравлический удар. Опыты Жуковского по изучению явления гидравлического удара в трубах.
- •90)От каких факторов зависит повышение давления при гидроударе? Способы борьбы с гидроударом.
- •91)Что называется местным сопротивлением? Чем обусловлена потеря напора в местных сопротивлениях?
- •92)От каких характеристик потока зависит режим движения жидкости? Какова зависимость между потерями напора и скоростью течения жидкости при ламинарном и турбулентном ее движении?
- •93)Что представляют собой линия тока и траектория движения? в чем их различие?
- •94)Приведите примеры равномерного и неравномерного, напорного и безнапорного движения.
- •95)Поясните физический смысл коэффициента Кориолиса в уравнении Бернулли.
- •96)Что называется полной удельной энергией потока?
- •97)Особенности турбулентного потока. Структура потока. Понятие об абсолютной и относительной шероховатости стенок трубы.
- •98)Истечение жидкости через насадки на примере внешнего цилиндрического насадка и сравнении с истечением через отверстие с теми же геометрическими параметрами.
Ньютоновские и неньютоновские жидкости.
Жидкости которые подчиняются закону Ньютона называют Ньютоновскими. Закон Ньютона для внутреннего трения в жидкости гласит, что при отсутствии относительной скорости движения слоев сила трения отсутствует и что сила трения не зависит от относительной скорости перемещения слоев. Неньютоновской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры. они представляют собой различные эмульсии и коллоидные растворы, которые состоят из двух фаз твердой и жидкой(полимеры, эмульсии, глинистые, меловые и коллоидные растворы)
Идеальная и вязкая жидкости.
Идеальная жидкость характеризуется абсолютной подвижностью, т.е. отсутствием сил взаимодействия между молекулами и абсолютной неизменяемостью в объеме при изменении температуры или под действием каких-либо сил. Идеальная жидкость не сопротивляется сдвигающим усилиям. Реальная или вязкая жидкость наоборот. Вязкая жидкость характеризуется наличием сил трения, которые возникают при ее движении. Вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. Потерянная энергия или потерянный напор обозначаются hw и имеют, естественно, линейную размерность
Гидравлические характеристики потока. Расход и средняя скорость.
Гидравлические характеристики потока – это давление и скорость.
Объемным расходом
называется объем жидкости проходящий
через данное сечение в единицу времени.
Объемный расход определяется по формуле:
Средняя скорость в сечении потока – это такая скорость, одинаковая для всех точек сечения потока, при которой происходит тот же расход, какой фактически имеет место при действительных скоростях, различных точек сечения. Средняя скорость определяется по формуле:
Также средняя скорость равна половине максимальной скорости потока:
Поток как совокупность элементарных струек. Понятие о линии тока и элементарной струйке.
В гидравлике применяется струйчатая модель движения жидкости. Поток жидкости рассматривается как состоящий из отдельных элементарных струек.
Линия тока - линия, проведенная в данный момент времени в движущейся жидкости так, что в любой ее точке вектор скорости частиц совпадает с касательной (рис.2.ІІ).При установившемся движении линия
тока совпадает с траекторией частиц.
Элементарная струйка – совокупность линий тока, проведенных через все точки элементраной площадки.
Уравнение Бернулли для потока реальной жидкости. Что представляет собой коэффициент α и что он учитывает?
Уравнение Бернулли для потока имеет вид:
- коэффициент кинематической энергии потока(коэффициент кориолиса). Отношение кинетической энергии потока к кинетической энергии , вычисленной в предположении что скорости всех точек живого сечения потока равны соедней скорости потока т.е.
Отсюда заключаем, что характеризует неравномерность распределения скоростей по сечению потока. Для ламинарного около 2, для турбулентного =1,05-1.1