Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_k_ekzamenu_1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
104.76 Кб
Скачать

37. Законы распределения непрерывных случайных величин

Плотность вероятности непрерывной случайной величины, она же дифференциальная функция распределения вероятностей - аналог закона распределения дискретной с.в. Но если закон распределения дискретной с.в. графически изображается в виде точек, соединённых для наглядности ломаной линией (многоугольник распределения), то плотность вероятностей графически представляет собой непрерывную гладкую линию (или кусочно-гладкую, если на разных отрезках задаётся разными функциями). Аналитически задаётся формулой. Если закон распределения дискретной с.в. ставит каждому значению x в соответствие определённую вероятность, то про плотность распределения такого сказать нельзя. Для непрерывных с.в. можно найти только вероятность попадания в какой-либо интервал. Считается, что для каждого отдельного (одиночного) значения непрерывной с.в. вероятность равна нулю. И графически вероятность попадания в интервал выражается площадью фигуры, ограниченной сверху графиком плотности вероятности, снизу осью ОХ, с боков - рассматриваемым интервалом. Свойства плотности вероятности: 1) Значения функции неотрицательны, т.е. f(x)≥0 2) Основное свойство плотности вероятности: несобственный интеграл от плотности вероятности в пределах от -∞ до +∞ равен единице (геометрически это выражается тем, что площадь фигуры, ограниченной сверху графиком плотности вероятности, снизу - осью OX, равна 1)

38. Нормальный закон распределения.

Нормальным называют распределение вероятностей непрерывной СВ, которое описывается плотностью f(x)=1/ δ√2π * e-(x-a)2/2*δ2.

39. Правило «трех сигм»

Правило: если СВ распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения. На практике правило 3-х сигм применяют так: если распределение изучаемой СВ неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально. f(x)=1/ δ√2π * e-(x-m)2/2 δ2

40. Выборочный метод математической статистики. Генеральная совокупность и выборка.

Выборочный метод опирается на два важных раздела математической статистики - теорию выбора из конечной совокупности и теорию выбора из бесконечной совокупности. Основное отличие в том, что выборочный метод для конечной и бесконечной совокупностей заключается в том, что в первом случае выборочный метод применяется, как правило, к объектам неслучайной, детерминированной природы (н-р, число дефектных изделий в данной партии готовой продукции не является СВ. Это число - неизвестная постоянная, которую и надлежит оценить по выборочным данным). Во втором случае выборочный метод обычно применяется для изучения свойств случайных объектов (н-р, для исследования свойств непрерывно распределённых случайных ошибок измерений, каждое из которых теоретически может быть истолковано как реализация одного из бесконечного множества возможных результатов). Выборочной совокупностью или просто выборкой называют совокупность случайно отобранных объектов. Генеральной совокупностью называют совокупность объектов, из которых производится выборка. Объемом совокупности называют число объектов этой совокупности. Преимущества выборочного метода: экономит затраты ресурсов, является единств возможным в случае бесконечной ген совокупности, дает возможность проведения углубленного исследования при тех же затратах, позволяется снизить ошибки регистрации. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]