
- •Часть 2. Волновые процессы. Волновая и квантовая оптика. Квантовая механика. Многоэлектронные атомы
- •Содержание
- •Волны. Плоские и сферические волны
- •1.2. Поток энергии волны
- •1.3. Групповая скорость волны
- •2.1. Интерференция волн
- •2.2. Стоячие волны
- •2.3. Звуковые волны
- •2.4. Эффект Доплера
- •2.5. Электромагнитные волны
- •2.6. Энергия электромагнитной волны. Вектор Умова – Пойнтинга
- •3.1. Отражение и преломление света. Полное отражение
- •3.2. Тонкая линза. Формула линзы
- •3. 3. Основные фотометрические характеристики
- •4.1. Интерференция световых волн. Когерентные источники света
- •4.2. Пространственная и временная когерентности
- •4.3. Интерференция на тонкой пленке
- •4.4. Практическое применение явления интерференции. Интерферометры
- •5.1. Дифракция света. Принцип Гюйгенса – Френеля. Метод зон Френеля
- •5.2. Дифракция Френеля на круглом отверстии
- •5.3. Дифракция Фраунгофера на одной щели.
- •5.4. Дифракционная решетка
- •5.5. Дифракция рентгеновских лучей
- •6. 1. Взаимодействие света с веществом
- •6.2. Тепловое излучение. Закон Кихгофа
- •6.3. Законы теплового излучения
- •7.1. Внешний фотоэффект. Законы фотоэффекта
- •Для каждого вещества существует красная граница фотоэффекта νК – такая минимальная частота падающего излучения, ниже которой фотоэффект не наблюдается.
- •Ч Рис.7.2 исло фотоэлектронов, вырываемых из катода за единицу времени, пропорционально интенсивности света падающего на катод при неизменном спектральном составе.
- •7. 2. Эффект Комптона
- •7.3. Природа электромагнитного излучения
- •7.4. Опыты Резерфорда. Планетарная модель атома
- •7.5. Постулаты Бора. Опыты Франка и Герца
- •8.1. Спектры атома водорода по теории Бора
- •8.2. Волны де Бройля. Опыты, подтверждающие волновые свойства частиц
- •8.3. Соотношения неопределенностей Гейзенберга
- •9. 1. Вероятностный смысл волны де Бройля. Волновая функция
- •9. 2. Уравнение Шредингера
- •9.3. Микрочастица в прямоугольной потенциальной яме с бесконечно высокими стенками
- •10.1. Прохождение частиц через потенциальный барьер
- •10.2. Орбитальный момент импульса и магнитный момент электрона в классической и квантовой механике
- •10.3. Опыты Штерна и Герлаха. Спин электрона
- •11.1. Состояния электронов в атоме. Принцип Паули. Структура многоэлектронного атома
- •11.2. Рентгеновское излучение
- •11.3. Энергия молекулы
- •Библиографический список
7.1. Внешний фотоэффект. Законы фотоэффекта
Под внешним фотоэффектом понимают процесс выбивания электронов из вещества под действием света. Фотоэффект был открыт Герцем в 1887 году и систематически исследован Столетовым в 1888 – 1889 г. Принципиальная схема установки для исследования фотоэффекта приведена на рис. 7.1.
Свет
освещает катод К,
изготовленный из исследуемого металла.
Электроны, испущенные катодом, перемещаются
под действием электрического поля к
аноду А,
в результате в цепи фотоэлемента течет
фототок I,
измеряемый гальванометром Г.
Напряжение между анодом и катодом можно
изменять потенциометром П.
На рис. 7.2 приведено семейство вольт - амперных характеристик, снятых при одной и той же частоте, но при разных потоках (интенсивностях) света. По результатам исследований были сформулированы следующие законы
в
Рис. 7.1 619.5
нешнего фотоэффекта:
М
аксимальная начальная скорость фотоэлектронов, вылетающих с поверхности катода, определяется частотой света и не зависит от его интенсивности.
Для каждого вещества существует красная граница фотоэффекта νК – такая минимальная частота падающего излучения, ниже которой фотоэффект не наблюдается.
Ч Рис.7.2 исло фотоэлектронов, вырываемых из катода за единицу времени, пропорционально интенсивности света падающего на катод при неизменном спектральном составе.
При объяснении первого и второго законов с помощью классической физики возникли следующие трудности. Было совершенно не понятно, почему начальная скорость вылетающих из катода электронов зависит от частоты света, а не от его интенсивности. Согласно электромагнитной теории вырывание свободных электронов из металла должно являться результатом их «раскачивания» в электрическом поле световой волной. Увеличение интенсивности, а, следовательно, и амплитуды световой волны должно приводить к увеличению начальной скорости фотоэлектронов.
Трудности в истолковании первого и второго закона фотоэффекта вызвали сомнение в универсальной применимости волновой теории света и привели А. Эйнштейна к созданию квантовой теории света.
Эйнштейн развил идею Планка о квантовом характере излучения атомами. Он предположил, что свет не только излучается, но также распространяется в пространстве и поглощается веществом в виде отдельных порций – квантов электромагнитного излучения. Эти кванты были названы фотонами. Процесс поглощения света веществом сводится к тому, что фотоны передают всю свою энергию частицам вещества. Для выхода электрона из вещества он должен совершить работу выхода А. В результате поглощения фотона электрон приобретает энергию hv. Если hv ≥ А, то электрон может совершить работу выхода и вырваться из металла. В соответствии с законом сохранения энергии максимальная кинетическая энергия фотоэлектрона равна
Это уравнение впервые было предложено Эйнштейном и называется уравнением Эйнштейна для фотоэффекта. Оно с успехом объясняет сформулированные выше законы фотоэффекта для небольших интенсивностей света.