
- •1. Електроерозійна обробка
- •2. Електрохімічна обробка
- •2.1. Різновиди електрохімічної обробки
- •1.Електрохімічна обробка в стаціонарному електроліті або поволі перемішуваному.
- •Мал. 2.2 Схема електрохімічної розмірної обробки:
- •2.2. Електрохімічна розмірна обробка
- •Технічні характеристики эхро
- •3. Хімічне фрезерування (контурне труєння)
- •4. Ультразвукова розмірна обробка (узро)
- •4.1 Загальні відомості про узро
- •4.2. Технологічні характеристики процесу узро
- •4.3. Застосування узро
- •5. Лазерна обробка
- •5.1. Основні відомості про процес лазерної обробки
- •5.2. Технологічні операції лазерної обробки
- •При виготовленні отворів застосовують дві схем:
- •6. Електронно-променева Розмірна обробка (епро)
- •7. Йоно-плазмова обробка материалв
- •7.1. Різновиди обробки
- •7.2. Іонно-променева розмірна обробка (іпро)
- •7.3. Плазмове труєння і нанесення матеріалів
- •Список рекомендованої літератури
7. Йоно-плазмова обробка материалв
7.1. Різновиди обробки
Іонно-плазмова обробка заснована на взаємодії іонів інших енергетичних частинок, отриманих в низькотемпературній плазмі, з поверхнею твердого тіла. Результатом взаємодії потоку частинок в розрідженому середовищі з поверхнею є обложена плівка з частини видаленої речовини або перетворена поверхня. Це дає можливість застосовувати процеси іонно-плазмової обробки для нанесення плівок різноманітних матеріалів, очищення, поліровки поверхні, труїть і формування прецизійних топологічних малюнків у виробництві напівпровідникових приладів і мікросхем, резисторів, конденсаторів, фотошаблонів, пьезокварцевых приладів м т.п. Застосування іонно-плазмової обробки розповсюджується і на інші області техніки, наприклад, оптику і машинобудування, де вона використовується для отримання полірованих поверхонь, зміцнення інструменту, захисту поверхонь износе- і корозійний-стійкими покриттями і т.п.
Низькотемпературна газова низького тиску плазма, використовувана в даних процесах, є слабо іонізований газ, що складається з суміші стабільних і збуджених атомів і молекул, продуктів дисоціації молекул-радикалів, електронів, позитивно і негативно заряджених іонів.
Плазма утворюється при зовнішній енергетичній дії на речовину за допомогою різного роду газових розрядів в сильних постійних і змінних електричних і постійних магнітних полях. Характерна частота змінного електричного поля, вживаного для утворення плазми, коливається в широких межах - від одиниць кілогерц до одиниць гігагерц. Магнітне поле забезпечує утримання плазми в заданому просторі і, збільшуючи довжину шляху руху електронів, підвищує ступінь іонізації газу.
Основним процесом створення активних частинок плазми інертних газів є іонізація. При утворенні плазми багатоатомного газу основними є процеси збудження і дисоціації. Число іонів, що утворюються, відносне мало. Дисоціація молекул речовини забезпечує освіту високо хімічно активних продуктів - радикалів, здатних енергійно вступати в гетерогенні хімічні реакції з матеріалами, утворюючи легко летючі з'єднання, що видаляються відкачуванням. Зміною параметрів електричного розряду» того, що формує плазму, і виду газу можна вправляти складом хімічно активних частинок, тобто управляти дією на матеріали. Іонізована складова частинок плазми - легко відбирається і прискорюється електричним полем до необхідних енергій. Важливим чинником, що визначає перевагу використання іонів, є можливість управління їх рухом, тобто спрямованістю їх дії на матеріали.
Основу іонно-плазмової обробки складає дія на матеріали «енергетичних» активних і неактивних частинок плазми. Поняття «енергетичні» подразумевает високу кінетичну або потенційну енергія частинок. При фізичній взаємодії кінетична енергія частинок є основною і може перевищувати теплову на декілька порядків величини. Частинки набувають здатності при зіткненні з поверхнею матеріалу фізично розпилювати його.
Висока потенційна енергія частинок визначається наявністю ненасичених хімічних зв'язків» Взаємодія таких частинок з оброблюваним матеріалом веде до формування хімічних сполук.
Дані процеси іонно-плазмової обробки обмежуються поверхнею і приповерхностными шарами матеріалів» оскільки кінетична енергія частинок не перевищує декілька килоэлектронвольт (10-16 - 10-15 Дж). При таких енергіях товщина поверхневого шару» в якому здійснюється взаємодія енергетичних частинок з матеріалами, не перевищує декількох десятків атомних шарів у поверхні (декількох нанометрів).
Ефективність протікання процесу фізичного розпилювання і процесу хімічної взаємодії слабо залежить від того заряджена частинка чи ні. Визначальним чинником є її енергія - кінетична або потенційна, оскільки вже на відстані декілька десятих нанометра поблизу оброблюваної поверхні відбувається нейтралізація іонів електронами, що вириваються з матеріалу електричним полем іонів.
Процеси іонно-плазмової обробки систематизують за двома основними ознаками:
природі взаємодії енергетичних частинок плазми з матеріалами (фізичне і хімічне);
способу здійснення взаємодії (іонне і плазмове).
Фізична взаємодія характеризується обміном енергій і імпульсом в пружних зіткненнях атомних частинок і приводить до розпилювання матеріалу з поверхні.
Хімічна - визначається непружними зіткненнями з обміном електронами між атомами і приводить до хімічних перетворень оброблюваного матеріалу.
При фізичному розпилюванні всі енергетичні зв'язки атома з іншими атомами розриваються, і він може віддалитися з поверхні.
При хімічному - енергетична дія направлена на електронні зв'язки атома в матеріалі. Ослаблення, розривши і встановлення нових зв'язків може приводити до видалення частинок матеріалу з поверхні у вигляді з'єднань з атомами енергетичних частинок.
У даних процесах неможливо повністю розділити кінетику фізичної і хімічної взаємодії. Кожний з процесів, фізичний або хімічний, несе в собі елементи іншого. Проте в реальних процесах іонно-плазмової обробки завжди можна виділити переважний механізм, що визначає ефективність їх протікання.
Друга ознака систематизації визначається відмінністю технологічних характеристик іонно-плазмової обробки при різних способах її здійснення. Якщо матеріал піддається дії всього набору частинок плазми - збуджених атомів і молекул, радикалів, позитивно і негативно заряджених іонів, електронів, а також ультрафіолетовому і тепловому опромінювання з плазми - це плазмова обробка.
Якщо оброблюваний матеріал знаходиться поза плазмою і обробляється тільки іонами, що відбираються з плазми, - це іонна обробка. Природа енергетичних іонів визначає чи буде взаємодія фізичною або хімічною.
Різним способам властиві характерні діапазони тиску в зоні обробки: плазмовому - вищий, іонному - більш нижчий.
У таблиці 7.1 систематизовані за ознаками природи взаємодії і способом здійснення найбільш поширені технологічні операції, здійснювані за допомогою іонно-плазмових процесів. Слід зазначити, що процеси нанесення є багатостадійними і включають як складову частину стадія розпилювання матеріалів.
Таблиця 7.1
Процеси іонно-плазмової обробки.
Спосіб природа взаємодії
обробки фізична хімічна
Труїть розпилюванням в Плазмохимічеськоє труїть
плазмі
Йонно-плазмове нанесення Реактивне іонно-плазмове плазмовий труїть
Реактивне іонно-плазмове
нанесення
Іонний те, що іонно-променеве труїть іонно-хімічне таким, що труїть Нанесення іонно-променевим розпилюванням Реактивне іонно-променеве нанесення