
- •Местные строительные материалы. Технология спецбетонов
- •1. Силикатный бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Осн. Физ.-мех. Св-ва
- •2. Жаростойкий бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Осн. Физ.-мех. Св-ва
- •3. Фибробетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Осн. Физ.-мех. Св-ва
- •4. Декоративный бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства. Оценка качества декоративных свойств.
- •5. Особо тяжелый и гидратный бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •6. Крупнопористый бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •7. Цементно-полимерные бетоны. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •8. Полимербетоны. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •9. Бетонополимеры. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •10. Мелкозернистый бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •11. Ячеистый бетон. Назначение и область применения. Исходные ингредиенты. Технология производства. Основные физико-механические свойства.
- •Проектирование предприятий по производству строительных материалов, изделий и конструкций
- •12. Состав, структура и специализация проектной организации. Типизация и стандартизация проектных работ
- •13. Обязанности заказчика, генерального проектировщика и дирекции строящегося предприятия. Порядок разработки задания на проектирование.
- •14. Состав проекта промышленного предприятия. Одно- и двухстадийное проектирование
- •16. Технико-экономическое обоснование (тэо). Разделы технико-экономического обоснования строительства
- •17. Тэп заводов. Экспертиза проектов
- •2. Конвейерный способ
- •3. Стендовый способ
- •20. Технологические схемы бсц
- •21. Склады сырья, материалов и готовой продукции
- •22. Расчет основных и вспомогательных площадей формовочного цеха
- •23. Проектная, действительная и перспективная мощности предприятия
- •24. Циклограмма работы основного технологического оборудования. Принципы построения циклограммы работы основного технологического оборудования. Выводы и рекомендации
- •25. Выбор объемно-планировочного решения здания. Особенности назначения поперечника цеха. Назначение длины пролета. Зонирование цехов
- •26. Принципы проектирования генерального плана
- •27. Охрана труда
- •28. Системы очистки воздуха. Места установки фильтров, система аспирации, приточно-вытяжной вентиль. Применение оборотного водоснабжения
- •Технология бетона, строительных изделий и консмтрукций. Технология заполнителей бетона
- •32. Зерновой состав заполнителей
- •36. Чистота поверхности заполнителя
- •37. Сцепление цементного камня с поверхностью заполнителей
- •38. Армирование бетона заполнителем
- •39. Влияние заполнителей на среднюю плотность бетона
- •40. Заполнители и теплопроводность бетона
- •41. Усадка бетона и заполнителя
- •42. Долговечность бетона и заполнителя
- •43. Однородность бетона и заполнителя
- •44. Приготовление бетонной смеси. Влияние заполнителей на технологию бетона
- •47. Укладка и уплотнение бетонной смеси
- •48. Твердение бетона
- •49. Бетонная смесь, виды и свойства
- •50. Технологические свойства бетонной смеси
- •51. Классификация бетонной смеси по подвижности
- •Вяжущие вещества
- •55. Магнезиальные вяжущие вещества.
- •56. Гипсовые вяжущие вещества.
- •57. Составы, характеристики и классификации портландцемента.
- •58. Взаимодействие портландцемента с водой.
- •59. Физико-механические свойства цементов.
- •60. Стойкость цементов и бетонов против действия химических и физических факторов.
- •61. Глиноземистый цемент.
- •2. Пц с пластифицирующими и гидрофобными добавками
- •Теплотехника и тто тси. Тепловые процессы и установки
- •65. Понятия о тепловых режимах в процессах сушки и тво, их влияния на качество готовой продукции.
- •66. Внешний тепло- и массообмен в процессах сушки и тво.
- •67. Тепловые установки периодического действия. Пропарочные камеры ямного типа, конструктивные особенности, различные схемы подачи пара. Тэп работы.
- •68. Тво БиЖби при избыточном давлении. Пять этапов автоклавирования, конструкции автоклавов. Вакуумирование.
- •69. Тепловые установки непрерывного действия. Туннельные и вертикальные пропарочные камеры, конструктивные особенности, схемы работы и принципы обогрева. Тэп работы.
- •70. Виды топлива его химический состав и свойства.
- •71. Сушка. Влажное состояние материала в процессе сушки. Статика и кинетика процессов сушки.
- •Технология изоляционных строительных материалов. Современные отделочные материалы
- •72. Классификация стеновых изделий.
- •73. Общие требования к стеновым изделиям.
- •74. Пенобетоны «сухой минерализации»
- •75. Фибробетон.
- •Виды отделочных материалов.
- •Классификация отделочных материалов.
- •78. Закон монолитной отделки по паропроницаемости.
- •Технология очистки вредных промышленных выбросов в производстве строительных материалов
- •83. Электрофильтры, схема и принцип работы.
- •С етчатый медленно - вращающийся мокрый фильтр.
- •89. Фильтры мокрой очистки (быстровращающиеся).
- •90. Схема и принцип работы масляных фильтров.
- •91. Схема принцип работы ротоклонов.
- •Контроль качества при производстве бетона и ж/б. Методы исследования технологии бетона и ж/б
- •92. Виды и методы контроля.
- •93. Контроль технологического процесса.
- •94. Входной контроль.
- •95. Операционный контроль.
- •98. Контроль качества стеновых керамических материалов.
- •100. Контроль качества бетонных смесей.
- •Строительные конструкции
- •113. Прочность бетона на сжатие и растяжение (кубиковая и призменная).
- •124. Назначение величин предварительного напряжения арматуры, первые потери.
- •Экономика отрасли
- •127. Роль отрасли в экономическом и социальном развитии народного хозяйства рф, ее экономические задачи в рыночных условиях.
- •129. Отраслевая структура промышленности строительных изделий и конструкций.
- •130. Факторы, влияющие на структурные сдвиги в пск.
- •131. Промышленное предприятие - основное звено экономики.
- •132. Экономические ресурсы предприятия.
- •133. Экономическая сущность и воспроизводство основных фондов предприятия
- •134. Состав и классификация основных фондов.
- •137. Состав и классификация оборотных средств предприятия.
- •138. Трудовые ресурсы предприятия.
- •139. Формы заработной платы.
- •140. Издержки производства
- •141. Себестоимость продукции
- •142. Группировка затрат по экономическим элементам
- •143. Формирование цен на продукцию предприятия.
- •144. Виды и классификация цен.
- •145. Ценовая политика.
38. Армирование бетона заполнителем
Как было указано выше объем зап-ля в бетоне составляет до 80% всего объема. Этим самым экономится расход цемент, и обеспечивается требуемая прочность. Мелкий зап-ль в этом случае играет отрицательную роль, т.к. прочность раствора на кварцевом песке ниже прочности на обычном ПЦ. Применением же крупного зап-ля можно повысить прочность бетона.
Форма зерен и качество пов-ти обеспечивают надежное сцепление с ЦК, => прочность бетона увеличивается от 5 до 10% в завис-ти от класса бетона.
Высокопрочный зап-ль будучи жестким компонентом бетона принимает нагрузку на себя и несколько разгружает растворную часть бетона, что позволяет снизить образование микродефектов, трещин в растворной фазе. Когда при возрастающей нагрузке на бетон трещины в растворной части фазе все же образуются, то высокопрочный зап-ль воедино принимает на себя нагрузку и этим самым может поддерживать несущую способность бетона. Т.о. зап-ль как бы армирует бетон. Этот эффект проявляется при исп-ии высококачественного чистого гранитного щебня. Прочность зап-ля в бетоне должна превышать прочность растворной фазы не более 25%. Особенность армирования бетонного зап-ля состоит в том, что зерна зап-ля имеют небольшие размеры, т.е. арматура разрезана на кусочки, а арматура д.б. внахлестку.
В бетоне армирующий эффект может проявляться только при взаимной привязке зерен зап-ля. Это возможно только при достаточно большом содержании зап-ля в бетоне. Если в бетоне мало зап-ля, то возникает плавающая структура зап-ля и взаимная привязка не наблюдается. При этом в лучшем случае прочность бетона будет = или меньше прочности растворной фазы.
39. Влияние заполнителей на среднюю плотность бетона
Обычные Б и ЖБ при известных достоинствах обладают недостатками – большой собственный вес. В изгибаемых ж/б конст-циях ≈ 50% несущей способности идет на восприятие собственного веса. Это особенно ощутимо при строительстве больших пролетных конст-ций, когда собственный вес ж/б конст-ции ограничивает их использование. Использование легких Б позволяет снизить собственный вес конст-ции на 20-40%, повысить полезную несущую способность и => расход арматуры. При этом резко сокращаются транспортные и монтажные нагрузки. Снижение плотности Б достигается в основном применением легких пористых заполнителей.
40. Заполнители и теплопроводность бетона
Теплопроводность - одно из важнейших свойств бетона, применяемого в ограждающих конструкциях. Чем легче бетон, тем, как правило, меньше его теплопроводность, поскольку уменьшение плотности бетона связано с повышением пористости, т. е. с вовлечением в объем бетона воздуха, являющегося в небольших порах прекрасным теплоизолятором.
Теплопроводность бетона в значительной мере определяется видом используемого заполнителя. Развитие производства пористых заполнителей для легких бетонов сделало возможным массовое применение легкобетонных стеновых панелей наружных стен в жилищном строительстве, теплоизоляционных и конструкционно-теплоизоляционных легких бетонов различного назначения.
Расчетная теплопроводность керамзитобетона при плотности 1000 кг/м3 составляет 0,41 Вт/(м∙°С), что в 2 раза меньше теплопроводности кирпичной кладки, а при плотности 1200 кг/м3 - 0,52Вт/(м∙°С) и т. д.
Имеется определенная общая зависимость между плотностью и теплопроводностью, однако возможны и существенные отклонения от этой зависимости. Известно, что аморфные материалы менее теплопроводны, чем кристаллические. Так, обычное силикатное стекло с плотностью 2500 кг/м3 имеет теплопроводность примерно 0,8 Вт/(м-°С), т. е. такую же, как у кирпича, плотность которого лишь 1700 кг/м3. Теплопроводность обычного бетона с плотностью близкой к плотности стекла, составляет примерно 1,4 Вт/(м-°С)'
Поэтому с точки зрения требований теплоизоляции предпочтительны заполнители, в составе которых больше стекла, например шлаковая пемза, получаемая быстрым охлаждением поризованного расплава (при быстром охлаждении расплава кристаллизация не происходит). Действительно, исследования показали сравнительно малую теплопроводность шлакопемзобетона.
На теплопроводность легкого бетона неплотной структуры (крупнопористого или малопесчаного) существенное влияние оказывает гранулометрический состав заполнителей, поскольку от него зависит характер межзерновой пористости. Из двух видов бетона с одинаковым общим объемом пор мелкопористый, как правило, будет иметь меньшую теплопроводность, так как эффективная теплопроводность воздуха, включающая и передачу излучением, зависит от размера пор (по А. Миснару):
Хв = 0,026 + 3,78 D
где D — диаметр поры, м.
Теплопроводность бетона зависит также от его влажности. Теплопроводность воды составляет 0,58 Вт/(м-°С), что во много раз больше теплопроводности воздуха. Поэтому, если поры бетона вместо воздуха заполняет вода, то теплопроводность его резко увеличивается, теплопотери через увлажненные ограждающие конструкции возрастают, а в зимний период возможно их промерзание. Теплопроводность льда составляет около 1,8 Вт/(м-°С), таким образом с промерзанием увлажненного бетона его теплопроводность еще более увеличивается.