Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_elektricheskoy_svyazi_Kons_part1.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
4.63 Mб
Скачать

Метрические пространства

Первое свойство, которым мы наделим пространство сигналов, называют метрикой.

Метрическое пространство – это множество с подходящим образом определенным расстоянием между его элементами. Само это расстояние, как и способ его определения, называют метрикой и обозначают . Метрика должна представлять собой функционал, т.е. отображение любой пары элементов и множества на действительную ось, удовлетворяющее интуитивно понятным требованиям (аксиомам):

  1. (равенство при ),

  2. ,

  3. (аксиома треугольника).

Следует отметить, что метрики можно задать разными способами и в результате для одних и тех же элементов получить разные пространства.

Примеры метрик:

1 ) ,

2) евклидова метрика,

3) евклидова метрика.

Линейные пространства

Усовершенствуем структуру пространства сигналов, наделив его простыми алгебраическими свойствами, присущими реальным сигналам, которые можно алгебраически складывать и умножать на числа.

Линейным пространством L над полем F называют множество элементов , называемых векторами, для которых заданы две операции –сложение элементов (векторов) и умножение векторов на элементы из поля F (называемые скалярами) . Не вдаваясь в математические детали, в дальнейшем, под полем скаляров будем понимать множества вещественных чисел R (случай действительного пространства L) или комплексных чисел С (случай комплексного пространства L). Эти операции должны удовлетворять системе аксиом линейного пространства.

  1. Замкнутость операций сложения и умножения на скаляр:

,

.

  1. Свойства сложения:

ассоциативность,

коммутативность.

3. Свойства умножения на скаляр:

ассоциативность,

дистрибутивность суммы векторов,

дистрибутивность суммы скаляров.

4. существование нулевого вектора.

5. существование проти-

воположного вектора.

Вектор, образованный суммированием нескольких векторов со скалярными коэффициентами

,

называют линейной комбинацией (многообразием). Легко видеть, что множество всех линейных комбинаций векторов при разных i (не затрагивая ) также образует линейное пространство, называемое линейной оболочкой для векторов .

Множество векторов называют линейно независимыми, если равенство

возможно лишь при всех i = 0. Например, на плоскости любые два неколлинеарные вектора (не лежащие на одной прямой) являются линейно независимыми.

Система линейно независимых и ненулевых векторов образует в пространстве L базис, если

.

Этот единственный набор скаляров {i}, соответствующий конкретному вектору , называют его координатами (проекциями) по базису .

Благодаря введению базиса операции над векторами превращаются в операции над числами (координатами)

.

Если в линейном пространстве L можно отыскать n линейно независимых векторов, а любые n + 1 векторов зависимы, то nразмерность пространства L (dim L = n).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]