Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_mikre.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.21 Mб
Скачать

Формы инфекции и их характеристика

Формы инфекции, или инфекционного процесса, чрезвычайно разнообразны и носят различные наименования в зависимости от природы возбудителя, его локализации в макроорганизме, путей распространения и других условий. Экзогенная инфекция возникает в результате заражения человека патогенными микроорганизмами, поступающими из окружающей среды с пищей, водой, воздухом, почвой, выделениями больного человека, реконвалесцента и микробоносителя.

Эндогенная инфекция вызывается представителями нормальной микрофлоры - условно-патогенными микроорганизмами самого индивидуума. Она часто возникает при иммунодефицитных состояниях организма.

Аутоинфекция - разновидность эндогенной инфекции, которая возникает в результате самозаражения путем переноса возбудителя (обычно руками самого больного) из одного биотопа в другой. Например, из полости рта или носа на раневую поверхность. В зависимости от локализации возбудителя различают очаговую инфекцию, при которой микроорганизмы локализуются в местном очаге и не распространяются по организму. Например, при фурункулезе стафилококки находятся в волосяных фолликулах, при ангине стрептококки обнаруживаются в миндалинах, при конъюнктивитах возбудитель локализуется на конъюнктиве глаза и т.д.

Однако очаговая инфекция при малейшем нарушении равновесия между макро- и микроорганизмами может перейти в генерализованную форму, при которой возбудитель распространяется по организму лимфогенным или гематогенным путем. В последнем случае развивается бактериемия или вирусемия. Кровь в таких случаях является механическим переносчиком возбудителя, поскольку последний в ней не размножается.

Наиболее тяжелой генерализованной формой инфекции является сепсис. Это состояние характеризуется размножением возбудителя в крови при резком угнетении основных механизмов иммунитета.

При сепсисе или септицемии главным местом размножения микроорганизмов является кровь. Близким к сепсису является циклическое размножение в крови некоторых простейших (малярийный плазмодий, трипаносомы) при соответствующих протозойных инвазиях. При возникновении гнойных очагов во внутренних органах начинается септикопиемия, а при массовом поступлении в кровь бактерий и их токсинов развивается бактериальный или токсико-септический шок.

Моноинфекция вызывается одним видом микроорганизмов, в то время как смешанная инфекция - двумя или несколькими видами. Наиболее тяжело протекают смешанные инфекции. Они могут быть вызваны разными бактериями: стафилококком, протеем, синегнойной палочкой, как это часто наблюдается при внутрибольничной хирургической инфекции. К смешанным (микст) инфекциям относятся многие респираторные заболевания, вызванные бактериями, вирусами, микоплазмами в разнообразных сочетаниях .

От смешанных инфекций следует отличать вторичную инфекцию, при которой к первоначальной, основной, уже развившейся болезни присоединяется другая, вызываемая новым возбудителем. Например, при заболевании брюшным тифом может возникнуть пневмония, вызванная другими бактериями или вирусами.

Реинфекцией называют заболевание, возникающее после перенесенной инфекции в случае повторного заражения тем же возбудителем, например реинфекции при дизентерии, гонорее, при других болезнях, перенесение которых не завершается образованием напряженного иммунитета. В тех случаях, когда инфицирование макроорганизма тем же возбудителем происходит до выздоровления, возникает суперинфекция. Рецидивом называют возврат клинических проявлений болезни без повторного заражения за счет оставшихся в организме возбудителей, например рецидивы при рожистом воспалении, остеомиелите, возвратном тифе.

По продолжительности взаимодействия возбудителя с макрооргазмом, а также по клиническим и патогенетическим признакам различают острые и хронические инфекции. Острые инфекции фотекают в сравнительно короткие сроки. Они характеризуются определенными для данного заболевания патогенезом и клиническими симптомами. В ряде случаев острые инфекции переходят в хронические, продолжительность которых колеблется от нескольких месяцев до многих лет. Хронические инфекции характеризуются длительным пребыванием микроорганизмов в организме, или персистенцией.

При острых инфекциях возбудитель вскоре после выздоровления обычно исчезает из организма. При хронической инфекции он находится в организме в течение более длительных сроков и может выделяться в окружающую среду.

Состояние, при котором выделение возбудителя продолжается после клинического выздоровления больного, называют микробоносительством (бактерионосительство, вирусоносительство). Чаще всего эти состояния формируются при слабой напряженности постинфекционного иммунитета, например, после перенесения кишечных инфекций (брюшной тиф, дизентерия и др.). Микробоносительство может развиваться также у здоровых лиц, контактировавших с больными или носителями соответствующих патогенных микроорганизмов. Клинически микробоносительство не проявляется. В тех случаях, когда инфекция протекает без выраженных симптомов, ее называют бессимптомной, а при наличии характерного симптомокомплекса - манифестной. Бессимптомная инфекция заканчивается выздоровлением при элиминации возбудителя либо переходом в манифестную острую, либо хроническую инфекцию.

 49 Стадии развития и характерные признаки инфекционной болезни. Под инфекционной болезнью следует по­нимать индивидуальный случай определяемого лабораторно и/или клинически инфекционного состояния данного макроорганизма, обуслов­ленного действием микробов и их токсинов, и сопровождающегося различными степенями на­рушения гомеостаза. Это частный случай про­явления инфекционного процесса у данного конкретного индивидуума. Об инфекцион­ной болезни говорят тогда, когда происходит нарушение функции макроорганизма, сопро­вождающееся формированием патологичес­кого морфологического субстрата болезни. ^ Для инфекционного заболевания характерны определенные стадии развития: 1. Инкубационный период — время, которое проходит с мо­мента заражения до начала клинических проявлений болезни. В зависимости от свойств возбудителя, иммунного статуса мак­роорганизма, характера взаимоотношений между макро- и микроорганизмом инкубационный период может колебаться от нескольких часов до нескольких месяцев и даже лет; ^ 2. Продромальный период — время появления первых клини­ческих симптомов общего характера, неспецифических для данного заболевания, например слабость, быстрая утомляе­мость, отсутствие аппетита и т. д.; 3. Период острых проявлений заболевания — разгар болезни. В это время проявляются типичные для данного за­болевания симптомы: температурная кривая, высыпания, местные поражения и т. п.; ^ 4. Период реконвалесценции — период угасания и исчез­новения типичных симптомов и клинического выздоровления. Не всегда клиническое выздоровление сопровождается осво­бождением макроорганизма от микроорганизмов. Иногда на фоне полного клинического выздоровления практически здоровый че­ловек продолжает выделять в окружающую среду патогенные микроорганизмы, т.е. наблюдается острое носительство, иногда переходящее в хроническое носительство (при брюшном тифе — пожизненное). ^ Заразность инфекционной болезни — свойство передавать возбудителя от инфицированного к здоровому восприимчивому организму. Инфекционные болезни характеризуются воспроизвод­ством (размножением) заразного начала, способного вызвать инфекцию у восприимчивого организма. ^ Инфекционные заболевания широко распространены среди населения. По массовости они занимают третье место после сер­дечно-сосудистых и онкологических болезней. Инфекционные бо­лезни отрицательно влияют на здоровье людей и наносят зна­чительный экономический ущерб. Существуют кризисные инфек­ционные болезни (например, ВИЧ-инфекция), которые в силу своей высокой эпидемичности и летальности угрожают всему че­ловечеству. ^ Инфекционные болезни различают по степени распрос­траненности среди населения; условно их можно разделить на пять групп: • имеющие наибольшую распространенность (более 1000 слу­чаев на 100 000 населения) — грипп, ОРВИ; • широко распространенные (более 100 случаев на 100 000 на­селения) — вирусный гепатит А, шигеллезы, острые кишеч­ные заболевания неустановленной этиологии, скарлатина, краснуха, ветряная оспа, эпидемический паротит; • часто встречающиеся (10—100 случаев на 100 000 населения) — сальмонеллезы без брюшного тифа, гастроэнтероколиты ус­тановленной этиологии, вирусный гепатит В, коклюш, корь; • сравнительно малораспространенные (1—10 случаев на 100 000 населения) — брюшной тиф, паратифы, иерсиниозы, бру­целлез, менингококковая инфекция, клещевой энцефалит, ге­моррагические лихорадки; • редко встречающиеся (менее 1 случая на 100 000 населения) — полиомиелит, лептоспироз, дифтерия, туляремия, риккетсиозы, малярия, сибирская язва, столбняк, бешенство.  50 Патогенность и вирулентность бактерий. Факторы патогенности. Патогенность — видовой признак, передающийся по наследству, закрепленный в геноме мик­роорганизма, в процессе эволюции паразита, т. е. это генотипи-ческий признак, отражающий потенциальную возможность мик­роорганизма проникать в макроорганизм (инфективность) и раз­множаться в нем (инвазионность), вызывать комплекс патоло­гических процессов, возникающих при заболевании.  ^ Фенотипическим признаком патогенного микроорганизма является его вирулентность, т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулент­ность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных живот­ных). При этом учитывают вид животных, пол, массу тела, спо­соб заражения, срок гибели. ^ К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия). Адгезия является пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность - способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других - кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др. Инвазия. Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани. Агрессия. Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано. Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины.  Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов. Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток. Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами.  При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин.  ^ Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.   51 Токсины бактерий, их природа, свойства, получение. Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины.  Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов. По молекулярной организации экзотоксины делятся на две группы:  • экзотоксины состоящие из двух фрагментов;  • экзотоксины, составляющие единую полипептидную цепь.  По степени связи с бактериальной клетки экзотоксины делятся условно на три класса.  • Класс А - токсины, секретируемые во внешнюю среду;  • Класс В - токсины частично секретируемые и частично связанные с микробной клеткой;  • Класс С - токсины, связанные и с микробной клеткой и попадающие в окружающую среду при разрушении клетки.  Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток. Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами.  При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин.  Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

8 Понятие об иммунитете. Виды иммунитета. Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной)индивидуальности каждого организма и вида в целом.  Различают несколько основных видов иммунитета.    Врожденный, иди видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия. Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохо­зяйственных животных (чума крупного рога­того скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствитель­ность человека к бактериофагам, поражаю­щим клетки бактерий. К генетическому им­мунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.  Видовой иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, при­обретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус. Приобретенный иммунитет — это невос­приимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вак­цинации. Примером естественного приобретенного иммунитета у человека может служить не­восприимчивость к инфекции, возникающая после перенесенного заболевания, так назы­ваемый постинфекционный иммунитет (на­пример, после брюшного тифа, дифтерии и других инфекций), а также «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепен­но воздействующих на иммунную систему своими антигенами.  В отличие от приобретенного иммунитета в результате перенесенного инфекционного за­болевания или «скрытной» иммунизации, на практике широко используют преднамерен­ную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также вве­дение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпетентных клеток. Приобретаемый при этом иммунитет называют поствакци­нальным, и служит он для защиты от возбу­дителей инфекционных болезней, а также других чужеродных антигенов. Приобретенный иммунитет может быть ак­тивным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный им­мунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам отно­сятся антитела, т. е. специфические иммуног­лобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммуни­зации, а также для специфического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.). Пассивный иммуни­тет у новорожденных детей создается имму­ноглобулинами при плацентарной внутриут­робной передаче антител от матери ребенку играет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка. Поскольку в формировании иммунитета принимают участие клетки иммунной сис­темы и гуморальные факторы, принято ак­тивный иммунитет дифференцировать в за­висимости от того, какой из компонентов иммунных реакций играет ведущую роль в формировании защиты от антигена. В связи с этим различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточный иммунитет. Примером клеточного иммунитета может служить противоопухолевый, а также транс­плантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при токсинемических инфекциях (столбняк, боту­лизм, дифтерия) обусловлен в основном ан­тителами (антитоксинами); при туберкулезе ведущую роль играют иммунокомпетентные клетки (лимфоциты, фагоциты) с участием специфических антител; при некоторых ви­русных инфекциях (натуральная оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы. В инфекционной и неинфекционной пато­логии и иммунологии для уточнения харак­тера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противо­вирусный, противогрибковый, противобактериальный, противопротозойный, трансплан­тационный, противоопухолевый и другие ви­ды иммунитета. Наконец, иммунное состояние, т. е. актив­ный иммунитет, может поддерживаться, со­храняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фак­тора, а иммунитет называют стерильным. Во втором случае иммунитет трактуют как не­стерильный. Примером стерильного иммуни­тета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильно­го — иммунитет при туберкулезе, который со­храняется только в присутствии в организме микобактерий туберкулеза. Иммунитет (резистентность к антигену) может быть системным, т. е. генерализован­ным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верх­них дыхательных путей (поэтому иногда его называют мукозальным). Видовой (наследственный) иммунитет. Врожденный, иди видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия. Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохо­зяйственных животных (чума крупного рога­того скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствитель­ность человека к бактериофагам, поражаю­щим клетки бактерий. К генетическому им­мунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.  Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего пер­вый этап взаимодействия данного антигена с клетками или молекулами-мишенями, опре­деляющими запуск патологического процесса или активацию иммунной системы. Не исклю­чены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловле­но генетическими особенностями вида, в час­тности отсутствием генов иммунного ответа к данному антигену.  Видовой иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, при­обретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

 52 Роль И. И. Мечникова в формировании учения об иммуните­те. Неспецифические факторы защиты организма. Мечников внёс огромный вклад в развитие иммунологии. Он обосновал учение о фагоцитозе и фагоцитах. Доказал, что фагоцитоз - явление универсальное, наблюдается у всех живот­ных, включая простейших, и проявляется по отно­шению ко всем чужеродным веществам (бактерии, органические частицы и т. д.). Теория фагоцитоза заложила краеугольный камень клеточной теории иммунитета и процесса иммуногенеза в целом с учетом клеточных и гуморальных факторов. За разработку теорий фагоцитоза И. И. Мечникову в 1908 г присуждена Нобелевская премия. Л. Пастер на своем портрете, подаренном И. И. Мечникову, написал: «На память знаменитому Мечникову — творцу фагоцитарной теории». ^ Неспецифические факторы защиты организма Механические факторы. Кожа и слизистые оболочки ме­ханически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, живот­ных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клет­ки эпителия (например, вирусы). Механическую защиту осуще­ствляет также реснитчатый эпителий верхних дыхательных пу­тей, так как движение ресничек постоянно удаляет слизь вмес­те с попавшими в дыхательные пути инородными частицами и микроорганизмами. ^ Физико-химические факторы. Антимикробными свой­ствами обладают уксусная, молочная, муравьиная и другие кис­лоты, выделяемые потовыми и сальными железами кожи; соля­ная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидко­стях и тканях организма (кровь, слюна, слезы, молоко, кишеч­ная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболе­ваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лече­ния воспалительных заболеваний. ^ Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов не­специфической резистентности, направленных на устранение чу­жеродных веществ и частиц, попавших в организм. ^ Гуморальные факторы неспецифической резистентности со­стоят из разнообразных белков, содержащихся в крови и жид­костях организма. К ним относятся белки системы комплемен­та, интерферон, трансферрин, β-лизины, белок пропердин, фибронектин и др. Белки системы комплемента обычно неактивны, но приоб­ретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказы­вает иммуномодулирующий, пролиферативный эффект и вызы­вает в клетке, инфицированной вирусом, состояние противови­русной резистентности. β -Лизины вырабатываются тромбоцита­ми и обладают бактерицидным действием. Трансферрин конку­рирует с микроорганизмами за необходимые для них метаболи­ты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате не­специфической блокады их поверхности. Отдельные гуморальные факторы (некоторые компоненты ком­племента, фибронектин и др.) вместе с антителами взаимодей­ствуют с поверхностью микроорганизмов, способствуя их фаго­цитозу, играя роль опсонинов. Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лим­фоциты), обладающих цитотоксическим действием против чуже­родных клеток (раковых, клеток простейших и клеток, поражен­ных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор. В поддержании резистентности организма имеет большое зна­чение и нормальная микрофлора организма.

Природа и характеристика комплемента. Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена. В состав комплемента входят 20 взаимодействующих между собой белков, девять из которых являются основными ком­понентами комплемента; их обозначают циф­рами: С1, С2, СЗ, С4... С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: Cl-Clq, Clr, Cls; СЗ-СЗа, СЗЬ; С5-С5а, С5b и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5—10% от всех белков крови), часть из них образуют фагоциты. ^ Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата). ^ Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый.  ^ По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и С Is. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса. ^ Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути — образу­ется мембраноатакующий комплекс. ^ Лектиновыи путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем. В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов — субъединицы СЗа и СЗb, С5а и С5b и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗb — играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са2+ и Mg2+.

 54 Интерфероны, природа. Способы получения и применения. Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном. Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ют три типа: α, β и γ-интерфероны. Альфа-интерферон вырабатывается лейко­цитами и он получил название лейкоцитар­ного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами — клетками соединительной ткани, а гамма-интерферон — иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками. Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица — ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов. Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости. ^ Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков. ^ Применение интерферона. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами. Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна.  ^ Получение интерферона. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом — путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного. Рекомбинантный интерферон нашел ши­рокое применение в медицине как профилак­тическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.  55 Видовой (наследственный) иммунитет. Врожденный, иди видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия. Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохо­зяйственных животных (чума крупного рога­того скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствитель­ность человека к бактериофагам, поражаю­щим клетки бактерий. К генетическому им­мунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.  ^ Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего пер­вый этап взаимодействия данного антигена с клетками или молекулами-мишенями, опре­деляющими запуск патологического процесса или активацию иммунной системы. Не исклю­чены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловле­но генетическими особенностями вида, в час­тности отсутствием генов иммунного ответа к данному антигену. ^ Видовой иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, при­обретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

 57 Структура и функции иммунной системы. Кооперация иммунокомпетентных клеток. Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это спе­циализированная, анатомически обособленная ткань, разбросан­ная по всему организму в виде различных лимфоидных образо­ваний. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (группо­вые лимфатические фолликулы, или пейеровы бляшки, минда­лины, подмышечные, паховые и другие лимфатические образо­вания, разбросанные по всему организму), а также циркулиру­ющие в крови лимфоциты. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфо­цитов, находящихся между этими клетками. Основными функ­циональными клетками иммунной системы являются лимфоци­ты, подразделяющиеся на Т- и В-лимфоциты и их субпопуля­ции. Общее число лимфоцитов в человеческом организме дос­тигает 1012, а общая масса лимфоидной ткани составляет при­мерно 1—2 % от массы тела. Лимфоидные органы делят на центральные (первичные) и периферические (вторичные). ^ Функции иммунной системы. Иммунная система выполняет функцию специфической зашиты от анти­генов, представ­ляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реак­ций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или об­разовавшийся в самом организме. Специфическая функция иммунной системы в обезвреживании антигенов дополняется ком­плексом механизмов и реакций неспецифичес­кого характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов. ^ Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС. Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген. ^ Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого. В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров. Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов. Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток. Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.  58 Иммунокомпетентные клетки. Т- и В-лимфоциты, макрофаги, их кооперация. Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку. Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции. B-лимфоциты – преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа. Макрофаги - клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных для организма частиц. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов. Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам. ^ Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС. Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген. ^ Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого. В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров. Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов. Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток. Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

 59 Иммуноглобулины, структура и функции.

^ Природа иммуноглобулинов. В ответ на введение антигена иммунная систе­ма вырабатывает антитела — белки, способные специфически со­единяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся ан­титела к γ-глобулинам, т. е. наименее подвижной в электричес­ком поле фракции белков сыворотки крови. В организме γ-глобулины вырабатываются особыми клетками — плазмоцитами. γ-глобулины, несущие функции антител, получили название иммуноглобули­нов и обозначаются символом Ig. Следовательно, антитела — этоиммуноглобулины, вырабатываемые в ответ на введение анти­гена и способные специфически взаимодействовать с этим же антигеном. Функции. Первичная функция состоит во взаимодсйствии их активных центров с комплементарными им де­терминантами антигенов. Вторичная функция состоит в их способности: • связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защи­ты от антигена; • участвовать в распознавании «чужого» антигена; • обеспечивать кооперацию иммунокомпетентных клеток (мак­рофагов, Т- и В-лимфоцитов); • участвовать в различных формах иммунного ответа (фагоци­тоз, киллерная функция, ГНТ, ГЗТ, иммунологическая то­лерантность, иммунологическая память). ^ Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из проте­ина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80 % иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кисло­там, щелочам, нагреванию до 60 °С. Выделить иммуноглобули­ны из сыворотки крови можно физическими и химическими ме­тодами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммуно­биологических препаратов. Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют под­классы. Например, IgG имеет четыре подкласса (IgG,, IgG2, IgG3, IgG4). Все классы и подклассы различаются по аминокис­лотной последовательности. Молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н и двух одинаковых легких цепей — L, соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, A, E, D, разли­чают пять типов тяжелых цепей: μ (мю), γ (гамма), α (альфа), ε (эпсилон) и Δ (дельта), различающихся по антигенности. Легкие цепи всех пяти классов являются общими и бывают двух типов: κ (каппа) и λ (ламбда); L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичны­ми, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (κ или λ). Как в Н-, так и в L-цепях имеется вариабельная — V область, в которой последовательность амино­кислот непостоянна, и константная — С область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы. При обработке γ -глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два не кристаллизующихся, содержащих детерминантные группы к антигену и названных Fab-фрагментами I и II и один кристаллизующий Fc-фрагмент. FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соеди­ненными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру. Как Н-цепи, так и L-цепи имеют отдельные, линейно свя­занные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи — по 2. Активные центры, или детерминанты, которые формиру­ются в V-областях, занимают примерно 2 % поверхности мо­лекулы иммуноглобулина. В каждой молекуле имеются две де­терминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может свя­зать две молекулы антигена. Поэтому антитела являются двух­валентными. Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молеку­лы. В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные — несколько позже.  60 Классы иммуноглобулинов, их характеристика. Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. ^ Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG — 21 день. IgG — мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе. Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело. Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии. IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности. ^ Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней. На его долю приходится около 5—10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту. IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного — опре­деляется уже на 20-й неделе внутриутробного развития. Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM. Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты. IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности. ^ Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых. Сывороточный IgA: На его долю прихо­дится около 10—15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней. IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе. Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер. IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности. Секреторный IgA: В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше. Синтезируется зрелыми В-лимфоцитами и их по­томками — плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме — его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается. Секреторная форма IgA — основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых. ^ Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко — примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса — около 190 кДа, константа седиментации — примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10—15 годам жизни. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ. Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью — тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа — реакция I типа. ^ Иммуноглобулин класса D. Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер. Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.  61 Антигены: определение, основные свойства. Антиге­ны бактериальной клетки. Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение. ^ Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью. Антигенность. Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп». Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества. Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма. К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики. Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена. ^ Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ. ^ Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы. Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом. ^ Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген. ^ Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру. ^ Капсулъные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры. На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение. Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей. В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.  62 Антителообразование: первичный и вторичный от­вет. Способность к образованию ан­тител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зре­лого возраста и несколько снижается к старости. Динамика об­разования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько ста­дий. Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.  ^ В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез ан­тител. В этот период антитела в крови не обнаруживаются.  ^ Во время логарифмической фазы синтезированные антитела высво­бождаются из плазмоцитов и поступают в лимфу и кровь.  В ста­ционарной фазе количество антител достигает максимума и ста­билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный от­вет) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG. В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифми­ческая фаза характеризуется быстрым нарастанием и значитель­но более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не­скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG. Такое различие динамики антителообразования при первич­ном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формирует­ся клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антиге­ном клон лимфоцитов с иммунологической памятью быстро раз­множается и интенсивно включает процесс антителогенеза. Очень быстрое и энергичное антителообразование при повтор­ной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при произ­водстве диагностических и лечебных сывороток от иммунизиро­ванных животных, а также для экстренного создания иммуни­тета при вакцинации.

 63 Иммунологическая память. Иммунологическая толе­рантность. Иммунологическая память. При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти. Иммунологическая память имеет высо­кую специфичность к конкретному анти­гену, распространяется как на гуморальное, так и клеточное звено иммунитета и обус­ловлена В- и Т-лимфоцитами. Она обра­зуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций. На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген. Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые по­коящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу. Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2—3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата — ревакцинациями. Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию — криз отторжения. ^ Иммунологическая толе­рантность — явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену. Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды. ^ Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.). ^ Иммунологическая толерантность отличает­ся специфичностью — она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант. ^ Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена. Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена. ^ Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности: 1. Элиминация из организма антигенспецифических клонов лимфоцитов. 2. Блокада биологической активности им-мунокомпетентных клеток. 3. Быстрая нейтрализация антигена анти­телами. Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.  64 Классификация гиперчувствительности по Джейлу и Кумбсу. Изучение молекулярных механизмов аллер­гии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллер­гии: анафилактический (I тип), цитотоксический (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый — к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ — лимфоидно-макрофагальная реакция. ^ Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, на­званных реагинами, которые обладают цитофильностью — сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки — залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез. Цитотоксические антитела (IgG, IgM), на­правленные против поверхностных структур (антигенов) соматических клеток макроорга­низма, связываются с клеточными мембра­нами клеток-мишеней и запускают различ­ные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соот­ветствующими клиническими проявлениями. Классическим примером является гемолити­ческая болезнь в результате резус-конфликта или переливания иногруппной крови. Цитотоксическим действием обладают так­же комплексы атиген—антитело, образующи­еся в организме пациента в большом количес­тве после введения массивной дозы антигена (аллергическая реакция III типа). В связи с кумулятивным эффектом клини­ческая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от при­менения иммунных гетерологичных сыворо­ток с лечебно-профилактической целью(«сы­вороточная болезнь»), а также при вдыхании белковой пыли («легкое фермера»). ^ Лабораторная диагностика аллергии при аллергических реакциях I типа основана на выявлении суммарных и специфических реа­гинов (IgE, IgG4) в сыворотке крови пациен­та. При аллергических реакциях II типа в сы­воротке крови определяют цитотоксические антитела (антиэритроцитарные, антилейко­цитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллергических реакций IV ти­па применяют кожно-аллергические пробы, которые широко используют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (туберкулез, лепра, бруцеллез, туляремия и др.).

^ Тип реакции

Фактор патогенеза

Механизм патогенеза

Клинический пример

^ I. анафилактический (ГНТ)

IgE, IgG4

Образование рецепторного комплекса IgE (G4)-АсК тучных клеток и базофилов → Взамодействие эпитопа аллергена с рецепторным комплексом → Активация тучных клеток и базофилов → Высвобождение медиаторов воспаления и других биологически активных веществ

Анафилаксия, анафилактический шок, поллинозы

^ II. цитотоксический (ГНТ)

IgM IgG

Выработка цитотоксических антител → Активация антителозависимого цитолиза

Лекарственная волчанка, аустоиммунная гемолитическая болезнь, аутоиммунная тромбоцитопения

^ III. иммунокомплексный (ГНТ)

IgM IgG

Образование избытка иммунных комплексов → Отложение иммунных комплексов на базальных мембранах, эндотелии и в соединительнотканной строме → Активация антителозависимой клеточно-опосредованной цитотоксичности → Запуск иммунного воспаления

Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «лёгкое фермера»

^ IV. клеточно-опосредованный (ГЗТ)

Т-лимфоциты

Сенсибилизация Т-лимфоцитов → Активация макрофага → Запуск иммунного воспаления

Кожно-аллергическая проба, контактная аллергия, белковая аллергия замедленного типа

 65 Механизмы гиперчувствительности замедленного типа. Клинико-диагностическое значение.

^ К аллергическим реак­циям относят два типа реагирования на чужеродное вещество: гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). К ГНТ относятся аллергические реакции, проявляющиеся уже че­рез 20—30 мин после повторной встречи с антигеном, а к ГЗТ — реакции, возникающие не ранее чем через 24—48 ч. Механизм и кли­нические проявления ГНТ и ГЗТ различны. ГНТ связана с вы­работкой антител, а ГЗТ — с клеточными реакциями. ^ ГЗТ впервые описана Р. Кохом (1890). Эта форма проявления не связана с антителами, опосредована клеточными механизма­ми с участием Т-лимфоцитов. К ГЗТ относятся следующие фор­мы проявления: туберкулиновая реакция, замедленная аллергия к белкам, контактная аллергия. ^ В отличие от реакций I, II и III типов реакции IV типа не свя­заны с антителами, а обусловлены клеточными реакциями, прежде всего Т-лимфоцитами. Реакции замедленного типа могут возникать при сенсибилизации организма: 1. Микроорганизмами и микробными антигенами (бактериальны­ми, грибковыми, протозойными, вирусными); 2. Гельминтами; 3. Природными и искусственно синтезированными гаптенами (лекарственные препараты, красители); 4. Некоторыми белками. Следовательно, реакция замедленного типа может вызывать­ся практически всеми антигенами. Но наиболее ярко она про­является на введение полисахаридов, низкомолекулярных пеп­тидов, т. е. малоиммуногенных антигенов. При этом реакцию вызывают малые дозы антигенов и лучше всего при внутрикожном введении. ^ Механизм аллергической реакции этого типа состоит в сен­сибилизации Т-лимфоцитов-хелперов антигеном. Сенсибилизация лимфоцитов вызывает выделение медиаторов, в частности интерлейкина-2, которые активируют макрофаги и тем самым вов­лекают их в процесс разрушения антигена, вызвавшего сенсибилизацию лимфоцитов. Цитотоксичность проявляют также и сами Т-лимфоциты. О роли лимфоцитов в возникновении аллер­гий клеточного типа свидетельствуют возможность передачи ал­лергии от сенсибилизированного животного несенсибилизированному с помощью введения лимфоцитов, а также подавление реакции при помощи антилимфоцитарной сыворотки. ^ Морфологическая картина при аллергиях клеточного типа но­сит воспалительный характер, обусловленный реакцией лимфо­цитов и макрофагов на образующийся комплекс антигена с сен­сибилизированными лимфоцитами. Аллергические реакции клеточного типа проявляются в виде туберкулиновой реакции, замедленной аллергии к белкам, кон­тактной аллергии. ^ Туберкулиновая реакция возникает через 5—6 ч после внутрикожного введения сенсибилизированным туберкулезной палоч­кой животным или человеку туберкулина, т. е. антигенов тубер­кулезной палочки. Выражается реакция в виде покраснения, при­пухлости, уплотнения на месте введения туберкулина. Сопровож­дается иногда повышением температуры тела, лимфопенией. Раз­витие реакции достигает максимума через 24—48 ч. Туберкули­новая реакция используется с диагностической целью для вы­явления заболеваний туберкулезом или контактов организма с туберкулезной палочкой. ^ Замедленная аллергия возникает при сенсибилизации малы­ми дозами белковых антигенов с адъювантом, а также конъю-гатами белков с гаптенами. В этих случаях аллергическая реак­ция возникает не раньше чем через 5 дней и длится 2—3 нед. Видимо, здесь играют роль замедленное действие конъюгированных белков на лимфоидную ткань и сенсибилизация Т-лимфо-цитов. ^ Контактная аллергия возникает, если антигенами являются низкомолекулярные органические и неорганические вещества, которые в организме соединяются с белками, образуя конъюга-ты. Конъюгированные соединения, выполняя роль гаптенов, вы­зывают сенсибилизацию. Контактная аллергия может возникать при длительном контакте с химическими веществами, в том числе фармацевтическими препаратами, красками, косметичес­кими препаратами (губная помада, краска для ресниц). Прояв­ляется контактная аллергия в виде всевозможных дерматитов, т. е. поражений поверхностных слоев кожи. Значение. Все реакции гиперчувствительности, в том числе и ГЗТ имеют большое значение. Их механизмы лежат в основе воспаления, которое способствует локализации инфекционного агента или иного антигена в пределах определённых тканей и формированию полноценной иммунной реакции защитного характера.  66 Аллергические пробы, их сущности, применение. Аллергические пробы - биологические реакции для диагностики ряда заболеваний, основанные на повышенной чувствительности организма, вызванной аллергеном.  ^ При многих инфекционных заболеваниях за счет активации кле­точного иммунитета развивается повышенная чувствительность организма к возбудителям и продуктам их жизнедеятельности. На этом основаны аллергические пробы, используемые для диагно­стики бактериальных, вирусных, протозойных инфекций, мико­зов и гельминтозов. Аллергические пробы обладают специфично­стью, но нередко они бывают положительными у переболевших и привитых. ^ Все аллергические пробы подразделяют на две группы — про­бы in vivo и in vitro. К первой группе {in vivo) относятся кожные пробы, осуществ­ляемые непосредственно на пациенте и выявляющие аллергию немедленного (через 20 мин) и замедленного (через 24 — 48 ч) типов. ^ Аллергические пробы in vitro основаны на выявлении сенсиби­лизации вне организма больного. Их применяют тогда, когда по тем или иным причинам нельзя произвести кожные пробы, либо в тех случаях, когда кожные реакции дают неясные результаты. ^ Для проведения аллергических проб используют аллергены — диагностические препараты, предназначенные для выявления специфической сенсибилизации организма. Инфекционные ал­лергены, используемые в диагностике инфекционных заболева­ний, представляют собой очищенные фильтраты бульонных куль­тур, реже взвеси убитых микроорганизмов или АГ, выделенные из них. ^ Кожные пробы. Инфекционные аллергены вводят, как правило, внутрикожно или накожно, путем втирания в скарифицированные участки кожи. При внутрикожном способе в среднюю треть передней поверхно­сти предплечья специальной тонкой иглой вводят 0,1 мл аллерге­на. Через 28 — 48 ч оценивают результаты реакции ГЗТ, определяя на месте введения размеры папулы. ^ Неинфекционные аллергены (пыльца растений, бытовая пыль, пищевые продукты, лекарственные и химические препараты) вводят в кожу уколом (прик-тест), накожно путем скарификации и втирания или внутрикожной инъекцией разведенного раствора аллергена. В качестве отрицательного контроля используют ИХН, в качестве положительного — раствор гистамина. Результаты учи­тывают в течение 20 мин (ГНТ) по величине папулы (иногда до 20 мм в диаметре), наличию отека и зуда. Внутрикожные пробы ставят в случае отрицательного или сомнительного результата прик-теста. По сравнению с последним, дозу аллергена уменьшают в 100-5000 раз. Кожные пробы на наличие ГЗТ широко применяют для выяв­ления инфицированности людей микобактериями туберкулеза (проба Манту), возбудителями бруцеллеза (проба Бюрне), лепры (реакция Митсуды), туляремии, сапа, актиномикоза, дерматомикозов, токсоплазмоза, некоторых гельминтозов и др. ^ Пробы in vitro. Эти методы исследования безопасны для больного, достаточ­но чувствительны, позволяют количественно оценить уровень аллергизации организма. В настоящее время разработаны тесты для определения сенси­билизации, основанные на реакциях ^ Т- и B-лимфоцитов, ткане­вых базофилов, выявлении общих специфических IgE в сыворот­ке крови и др. К ним относятся реакции торможения миграции лейкоцитов и бласттрансформации лимфоцитов, специфическое розеткообразование, базофильный тест Шелли, реакция дегрануляции тканевых базофилов, а также аллергосорбентные методы (определение специфических IgE в сыворотке крови). ^ Реакция торможения миграции лейкоцитов (РТМЛ). РТМЛ ос­нована на подавлении миграции моноцитов и других лейкоцитов под действием медиаторов, вырабатываемых сенсибилизирован­ными лимфоцитами, в присутствии специфического аллергена. ^ Реакция бласттрансформации лимфоцитов (РБТ). В основе этой реакции лежит способность нормальных лимфоцитов перифери­ческой крови вступать в митоз и превращаться в бластные формы при культивировании их in vitro под действием специфических фак­торов — аллергенов и неспецифических стимуляторов митогенеза — митогенов (фитогемагглютинин, конканавалин А, липополисахариды и другие вещества). ^ Реакция специфического розеткообразования. Розетки — харак­терные образования, возникающие in vitro в результате прилипа­ния эритроцитов к поверхности иммунокомпетентных клеток. Розеткообразование может происходить спонтанно, поскольку Т-лимфоциты человека содержат рецепторы к эритроцитам барана. Спон­танное розеткообразование здоровых людей составляет 52 — 53% и служит показателем функционального состояния Т-лимфоцитов. Этот феномен воспроизводится также и в том случае, если используют эритроциты, на которых фиксированы соответствую­щие аллергены. ^ Реакция дегрануляции тканевых базофилов. Методика основа­на на том, что под действием аллергена происходит дегрануляция тканевых базофилов крысы, предварительно сенсибилизирован­ных цитофильными AT из сыворотки крови больного. ^ Базофильный тест Шелли. Известно, что базофильные гранулоциты человека или кролика также дегранулируются в присут­ствии сыворотки больного и аллергена, к которому чувствителен данный пациент. ^ Определение антител класса IgE in vitro. Лабораторная диагно­стика заболеваний, в основе которых лежит ГНТ, основана на определении аллергенспецифических IgEанти-IgE. При использо­вании радиоактивной метки метод носит на­звание радиоаллергосорбентного теста (PACT), но чаще в каче­стве метки используют фермент или флюоресцирующее вещество (ФАСТ). Время анализа — 6 — 7 часов. Принцип метода: фиксиро­ванный на твердой основе известный аллерген инкубируют с сы­вороткой крови больного; находящиеся в сыворотке специфичес­киеIgEанти-IgE связываются с аллергеном и, таким образом, остаются фиксированными на основе и могут вступать в специ­фическое взаимодействие с добавляемыми мечеными анти-IgE.  67 Гиперчувствительностъ немедленного типа. Меха­низмы возникновения, клиническая значимость. ^ Гиперчувствительность немедленного типа (ГНТ) — ги­перчувствительность, обусловленная антителами (IgE, IgG, IgM) против аллергенов. Развивается через не­сколько минут или часов после воздействия аллергена: рас­ширяются сосуды, повышается их проницаемость, развивают­ся зуд, бронхоспазм, сыпь, отеки. Поздняя фаза ГНТ дополня­ется действием продуктов эозинофилов и нейтрофилов. К ГНТ относятся I, II и III типы аллергических реакций (по Джеллу и Кумбсу): I тип — анафилактический, обусловлен­ный главным образом действием IgE; II тип — цитотоксический, обусловленный действием IgG, IgM; III тип — иммунокомплексный, развивающийся при образовании иммунного комплекса IgG, IgM с антигенами. В отдельный тип выделяют антирецепторные реакции. ^ Основные типы реакций гиперчувствительности I тип — анафилактический. При первичном контакте с ан­тигеном образуются IgE, которые прикрепляются Fc-фрагментом к тучным клеткам и базофилам. Повторно вве­денный антиген перекрестно связывается с IgE на клетках, вызывая их дегрануляцию, выброс гистамина и других медиа­торов аллергии.  Первичное поступление аллергена вызывает продук­цию плазмацитами IgE, IgG4. Синтезированные IgE прикрепляются Fc-фрагментом к Fc-pe цепторам (FceRl) базофилов в крови и тучных клеток в слизистых оболочках, соединительной ткани. При повторном поступ­лении аллергена на тучных клетках и базофилах образуюто комплексы IgE с аллергеном (перекрестная сшивка FceRl анти­геном), вызывающие дегрануляцию клеток. ^ Клинические проявления гиперчувствительности I типа. Клинические проявления гиперчувствительности I типа могут протекать на фоне атопии. Атопия — наследственная предрасположенность к развитию ГНТ, обусловленная повы­шенной выработкой IgE-антител к аллергену, повышенным количеством Fc-рецепторов для этих антител на тучных клет­ках, особенностями распределения тучных клеток и повы­шенной проницаемостью тканевых барьеров. ^ Анафилактический шок — протекает остро с развитием коллапса, отеков, спазма гладкой мускулатуры; часто заканчи­вается смертью.Крапивница — увеличивается проницае­мость сосудов, кожа краснеет, появляются пузыри, зуд. Бронхиальная астма — развиваются воспаление, бронхо-спазм, усиливается секреция слизи в бронхах. ^ II тип — цитотоксический. Антиген, расположенный на клетке «узнается» антителами классов IgG, IgM. При взаимо­действии типа «клетка-антиген-антитело» происходит актива­ция комплемента и разрушение клетки по трем направлениям: комплементзависимый цитолиз; фагоцитоз; антителозависимая клеточная цитотоксичность. Время реакции — минуты или часы. Ко II типу гиперчувствительности близки антирецепторные реакции (так называемый IV тип гиперчувствительности), основой которых являются антирецепторные антитела, на­пример антитела против рецепторов к гормонам. ^ Клинические проявления II типа. По II типу гиперчувствительнос­ти развиваются некоторые аутоиммунные болезни, обуслов­ленные появлением аутоантител к антигенам собственных тканей: злокачественная миастения, аутоиммун­ная гемолитическая анемия, вульгарная пузырчатка, синдром Гудпасчера, аутоиммунный гипертиреоидизм, инсулинозави-симый диабет II типа. ^ Аутоиммунную гемолитическую анемию вызывают анти­тела против Rh-антигена эритроцитов; эритроциты разруша­ются в результате активации комплемента и фагоцитоза. Ле­карственно-индуцируемые гемолитическая анемия, гранулоцитопения и тромбоцитопениясопровождаются появле­нием антител против лекарства — гаптена и цитолизом кле­ток, содержащих этот антиген. ^ III тип — иммунокомплексный. Антитела классов IgG, IgM образуют с растворимыми антигенами иммунные комплексы, которые активируют комплемент. При избытке антигенов или недостатке комплемента иммунные комплексы откладывают­ся на стенке сосудов, базальных мембранах, т. е. структурах, имеющих Fc-рецепторы. Первичными компонентами III типа гипрчувствительности являются растворимые иммунные комплексы антиген-анти­тело и комплемент (анафилатоксины С4а, СЗа, С5а). При из­бытке антигенов или недостатке комплемента иммунные комплексы откладываются на стенке сосудов, базальных мем­бранах, т.е. структурах, имеющих Fc-рецепторы. Поврежде­ния обусловлены тромбоцитами, нейтрофилами, иммунными комплексами, комплементом. Привлекаются провоспалительные цитокины, включая TNF-a и хемокины. На поздних стади­ях в процесс вовлекаются макрофаги. Реакция может быть общей (например, сывороточная бо­лезнь) или вовлекать отдельные органы, ткани, включая ко­жу (например, системная эритематозная волчанка, реакция Артюса), почки (например, волчаночный нефрит), легкие (например, аспергиллез) или другие органы. Эта реакция может быть обусловлена многими микроорганизмами. Она развивается через 3-10 часов после экспозиции антигена, как в реакции Артюса. Антиген может быть экзогенный (хро­нические бактериальные, вирусные, грибковые или прото-зойные инфекции) или эндогенный, как при системной эри-тематозной волчанке. ^ Клинические проявления III типаСывороточная болезнь происходит при введении высоких доз антигена, например лошадиной противостолбнячной сы­воротки. Через 6-7 дней в крови появляются антитела про­тив лошадиного белка, которые, взаимодействуя с данным антигеном, образуют иммунные комплексы, откладывающие­ся в стенках кровеносных сосудов и тканях. Развиваются си­стемные васкулиты, артриты (отложение комплексов в суста­вах), нефрит (отложение комплексов в почках). ^ Реакция Артюса развивается при повторном внутрикожном введении антигена, который локально образует иммун­ные комплексы с ранее накопившимися антителами. Прояв­ляется отеком, геморрагическим воспалением и некрозом.  68 Анафилактический шок и сывороточная болезнь. Причи­ны возникновения. Механизм. Их предупреждение. Анафилаксия пред­ставляет собой реакцию немедленного типа, возникающую при парентеральном повторном введении антигена в ответ на повреждающее действие комплекса антиген — антитело и характеризу­ющуюся стереотипно протекающей клинической и морфологи­ческой картиной. Основную роль в анафилаксии играет цитотропный IgE, име­ющий сродство к клеткам, в частности базофилам и тучным клеткам. После первого контакта организма с антигеном обра­зуется IgE, который вследствие цитотропности адсорбируется на поверхности названных выше клеток. При повторном попадании в организм этого же антигена IgE связывает антиген с образо­ванием на мембране клеток комплекса IgE — антиген. Комплекс повреждает клетки, которые в ответ на это выделяют медиато­ры — гистамин и гистаминоподобные вещества (серотонин, кинин). Эти медиаторы связываются рецепторами, имеющимися на поверхности функциональных мышечных, секреторных, сли­зистых и других клеток, вызывая их соответствующие реакции. Это ведет к сокращению гладкой мускулатуры бронхов, кишеч­ника, мочевого пузыря, повышению проницаемости сосудов и другим функциональным и морфологическим изменениям, ко­торые сопровождаются клиническим проявлением. Клинически анафилаксия проявляется в виде одышки, удушья, слабости, беспокойства, судорог, непроизвольного мочеиспускания, дефе­кации и др. Анафилактическая реакция протекает в три фазы: в 1-й фазе происходит сама реакция антиген — антитело; во 2-й фазе выделяются медиаторы анафилактической реакции; в 3-й фазе проявляются функциональные изменения.  ^ Анафилактическая реакция возникает спустя несколько ми­нут или часов после повторного введения антигена. Протекает в виде анафилактического шока или как местные проявления. Ин­тенсивность реакции зависит от дозы антигена, количества об­разующихся антител, вида животного и может закончиться выз­доровлением или смертью. Анафилаксию легко можно вызвать в эксперименте на животных. Оптимальной моделью для воспро­изведения анафилаксии является морская свинка. Анафилаксия может возникать на введение любого антигена любым способом (подкожно, через дыхательные пути, пищеварительный тракт) при условии, что антиген вызывает образование иммуноглобу­линов. Доза антигена, вызывающая сенсибилизацию, т. е. повы­шенную чувствительность, называется сенсибилизирующей. Она обычно очень мала, так как большие дозы могут вызвать не сенсибилизацию, а развитие иммунной защиты. Доза антигена, введенная уже сенсибилизированному к нему животному и вы­зывающая проявление анафилаксии, называется разрешающей. Разрешающая доза должна быть значительно больше, чем сен­сибилизирующая. ^ Состояние сенсибилизации после встречи с антигеном сохра­няется месяцами, иногда годами; интенсивность сенсибилизации можно искусственно уменьшить введением малых разрешающих доз антигена, которые связывают и выводят из циркуляции в организме часть антител. Этот принцип был использован для де­сенсибилизации (гипосенсибилизации), т.е. предупреждения ана­филактического шока при повторных введениях антигена. Впер­вые способ десенсибилизации предложил русский ученый А. Без­редка (1907), поэтому он называется способом Безредки. Спо­соб состоит в том, что человеку, ранее получавшему какой-либо антигенный препарат (вакцину, сыворотку, антибиотики, пре­параты крови и др.), при повторном введении (при наличии у него повышенной чувствительности к препарату) вначале вво­дят небольшую дозу (0,01; 0,1 мл), а затем, через 1—1'/2 ч, — основную. Таким приемом пользуются во всех клиниках для из­бежания развития анафилактического шока; этот прием являет­ся обязательным. Возможен пассивный перенос анафилаксии с антителами. ^ Сывороточной болезнью называют реакцию, возникающую при разовом парентеральном введении больших доз сывороточных и других белковых препаратов. Обычно реакция возникает спустя 10—15 сут. Механизм сывороточной болезни связан с образова­нием антител против введенного чужеродного белка (антигена) и повреждающим действием на клетки комплексов антиген — антитело. Клинически сывороточная болезнь проявляется отеком кожи и слизистых оболочек, повышением температуры тела, при-пуханием суставов, сыпью и зудом кожи; наблюдаются измене­ния в крови (увеличение СОЭ, лейкоцитоз и др.). Сроки про­явления и тяжесть сывороточной болезни зависят от содержа­ния циркулирующих антител и дозы препарата. Это объясняется тем, что ко 2-й неделе после введения белков сыворотки выра­батываются антитела к белкам сыворотки и образуется комплекс антиген — антитело. Профилактика сывороточной болезни осу­ществляется по способу Безредки.  69 Теории иммунитета. Теория иммунитета Мечникова - теория, согласно которой решающая роль в антибактериальном иммунитете принадлежит фагоцитозу. Сначала И.И.Мечников как зо­олог экспериментально изучал морских беспозвоночных фауны Черного моря в Одессе и обратил внимание на то, что опре­деленные клетки (целомоциты) этих животных поглощают инородные субстанции (твердые частицы и бактерий), проник­шие во внутреннюю среду. Затем он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы на­блюдали и до И.И.Мечникова другие микроскописты. Но толь­ко И.И.Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а есть защитный процесс в интересах целого организма. И.И.Мечников первым рассмат­ривал воспаление как защитное, а не разрушительное явление. Против теории И.И.Мечникова в начале XX в. были большин­ство патологов, так как они наблюдали фагоцитоз в очагах воспаления, т.е. в больных местах, и считали лейкоциты (гной) болезнетворными, а не защитными клетками. Более того, не­которые полагали, что фагоциты — разносчики бактерий по организму, ответственные за диссеминацию инфекций. Но идеи И.И.Мечникова устояли; ученый назвал действующие таким образом защитные клетки "пожирающими клетками". Его мо­лодые французские коллеги предложили использовать гречес­кие корни того же значения. И.И.Мечников принял этот ва­риант, и появился термин "фагоцит". Эти работы и теория Мечникова чрезвычайно понравились Л.Пастеру, и он пригла­сил Илью Ильича работать в свой институт в Париже. ^ Теория иммунитета Эрлиха — одна из первых теорий антителообразования, согласно которой у клеток имеются антигенспецифические рецепторы, высвобождающиеся в качестве антител под действием антигена. В статье Пауля Эрлиха противомикробные вещества крови автор назвал термином "антитело", так как бактерий в то время называли термином "korper" — микроско­пические тельца. Но П.Эрлиха "посетило" глубокое теорети­ческое прозрение. Несмотря на то, что факты того времени свидетельствовали, что в крови неконтактировавшего с кон­кретным микробом животного или человека не определяются антитела против данного микроба, П.Эрлих каким-то образом осознал, что и до контакта с конкретным микробом в организ­ме уже есть антитела в виде, который он назвал "боковыми цепями". Как мы теперь знаем, это именно так, и "боковые цепи" Эрлиха — это подробно изученные в наше время рецеп­торы лимфоцитов для антигенов. Позже этот же образ мыслей П.Эрлих "применил" к фармакологии: в своей теории химиотерапии он предполагал предсуществование в организме рецеп­торов для лекарственных веществ. В 1908 г. П.Эрлиху вручили Нобелевскую премию загуморальную теорию иммунитета. Также есть ещё некоторые теории. ^ Теория иммунитета Безредки - теория, объясняющая защиту организма от ряда инфекционных болезней возникновением специфической местной невосприимчивости клеток к возбудителям. ^ Инструктивные теории иммунитета — общее название теорий антителообразования, согласно которым ведущая роль в иммунном ответе отводится антигену, прямо участвующему в качестве матрицы при формировании специфической конфигурации антидетерминанты либо выступающему в качестве фактора, направленно изменяющего биосинтез иммуноглобулинов плазматическими клетками.

 70 Особенности противовирусного, противобактериального, противогрибкового, противоопухолевого, трансплантационного иммунитета.

^ Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, ин­фицированные вирусом, уничтожаются цитотоксическими лим­фоцитами, а также NK-клетками и фагоцитами, взаимодействую­щими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Проти­вовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифическо­го иммунитета — сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организ­ма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клет­ках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрес­сию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена сек­реторными IgA, которые, взаимодействуя с вирусами, препятст­вуют их адгезии на эпителиоцитах. ^ Противобактериальный иммунитет направлен как против бактерий, так и против их токсинов (антитоксический иммуни­тет). Бактерии и их токсины нейтрализуются антибактериаль­ными и антитоксическими антителами. Комплексы бактерия (антигены)-антитела активируют комплемент, компоненты ко­торого присоединяются к Fc-фрагменту антитела, а затем обра­зуют мембраноатакующий комплекс, разрушающий наружную мембрану клеточной стенки грамотрицательных бактерий. Пептидогликан клеточных стенок бактерий разрушается лизоцимом. Антитела и комплемент (СЗЬ) обволакивают бактерии и «приклеивают» их к Fc- и С3b-рецепторам фагоцитов, выпол­няя роль опсонинов вместе с другими белками, усиливающими фагоцитоз (С-реактивным белком, фибриногеном, маннан-связывающим лектином, сывороточным амилоидом). Основным механизмом антибактериального иммунитета является фагоцитоз. Фагоциты направленно перемещаются к объекту фагоцитоза, реагируя на хемоаттрактанты: вещества микробов, активированные компоненты комплемента (С5а, С3а) и цитокины. Противобактериальная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с бактериями, препятствуют их адгезии на эпителиоцитах. ^ Противогрибковый иммунитет. Антитела (IgM, IgG) при ми­козах выявляются в низких титрах. Основой противогрибкового иммунитета является клеточный иммунитет. В тканях происхо­дит фагоцитоз, развивается эпителиоидная гранулематозная ре­акция, иногда тромбоз кровеносных сосудов. Микозы, особенно оппортунистические, часто развиваются после длительной ан­тибактериальной терапии и при иммунодефицитах. Они сопро­вождаются развитием гиперчувствительности замедленного ти­па. Возможно развитие аллергических заболеваний после реcпираторной сенсибилизации фрагментами условно-патогенных грибов родов Aspergillus, Penicillium, Mucor, Fusarium и др. ^ Противоопухолевый иммунитет основан на Th1-зависимом клеточном иммунном ответе, активирующем цитотоксические Т-лимфоциты, макрофаги и NK-клетки. Роль гуморального (антительного) иммунного ответа невелика, поскольку антите­ла, соединяясь с антигенными детерминантами на опухолевых клетках, экранируют их от цитопатогенного действиях иммун­ных лимфоцитов. Опухолевый антиген распознается антигенпрезентирующими клетками (дендритными клетками и макро­фагами) и непосредственно или через Т-хелперы (Th1) пред­ставляется цитотоксическим Т-лимфоцитам, разрушающим опу­холевую клетку-мишень. Кроме специфического противоопухолевого иммунитета, иммунный надзор за нормальным составом тканей реализует­ся за счет неспецифических факторов. Неспецифические фак­торы, повреждающие опухолевые клетки: 1) NK-клетки, систе­ма мононуклеарных клеток, противоопухолевая активность которых усиливается под воздействием интерлейкина-2 (ИЛ-2) и α-, β-интерферонов; 2) ЛАК-клетки (мононуклеарные клетки и NK-клетки, активированные ИЛ-2); 3) цитокины (α - и β -интерфероны, ФНО- α и ИЛ-2). ^ Трансплантационным иммунитетом назы­вают иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммуните­та необходимо для решения одной из важней­ших проблем современной медицины — пе­ресадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологи­ческой совместимости тканей донора и реци­пиента. Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их соста­ве содержатся генетически чужеродные для организма антигены. Эти антигены, получившие название трансплантационных или антигенов гистосовместимости, наиболее полно представлены на ЦПМ клеток. Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости — такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во мно­гом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента. При контакте с чужеродными трансплан­тационными антигенами организм реагирует факторами клеточного и гуморального зве­ньев иммунитета. Основным фактором кле­точного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сен­сибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредованную цитотоксичность. Специфические антитела, которые образу­ются на чужеродные антигены (гемагглютинины, гемолизины, лейкотоксины, цитотоксины), имеют важное значение в формирова­нии трансплантационного иммунитета. Они запускают антителоопосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредованная цитотоксичность). Возможен адоптивный перенос трансплан­тационного иммунитета с помощью активи­рованных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму. Механизм иммунного отторжения переса­женных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетентных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе про­исходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспале­ние, тромбоз кровеносных сосудов, наруша­ется питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами. В процессе реакции отторжения формиру­ется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный от­вет, который протекает очень бурно и быстро заканчивается отторжением трансплантата. С клинической точки зрения выделяют ос­трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.  71 Понятие о клинической иммунологии. Иммунный статус человека и факторы, влияющие на него. Клиническая иммунология - это клиническая и лабораторная дисциплина, занимающаяся изучением вопросов диагностики и лечения больных с различными заболеваниями и патологическими состояниями, в основе которых лежат иммунологические механизмы, а также состояниями, в терапии и профилактике которых иммунопрепараты играют ведущую роль. ^ Иммунный статус — это структурное и функциональное состояние иммунной сис­темы индивидуума, определяемое комплек­сом клинических и лабораторных иммуно­логических показателей. Таким образом, иммунный статус ха­рактеризует анатомо-функциональное состо­яние иммунной системы, т. е. ее способность к иммунному ответу на определенный анти­ген в данный момент времени. ^ На иммунный статус оказывают влияние следующие факторы: • климато-географические; • социальные; • экологические (физические, химические и биологические); • «медицинские» (влияние лекарственных веществ, оперативные вмешательства, стресс и т. д.). ^ Среди климато-географических факторов на иммунный статус оказывают влияние тем­пература, влажность, солнечная радиация, длина светового дня и др. Например, фагоци­тарная реакция и кожные аллергические про­бы менее выражены у жителей северных ре­гионов, чем у южан. Вирус Эпштейна—Барр у людей белой расы вызывает инфекционное за­болевание — мононуклеоз, у лиц негроидной расы — онкопатологию (лимфома Беркитта), а у лиц желтой расы — совсем другую онко­патологию (назофарингеальная карцинома), причем только у мужчин. Жители Африки менее подвержены заболеванию дифтерией, чем европейское население. ^ К социальным факторам, оказывающим влияние на иммунный статус, относятся пи­тание, жилищно-бытовые условия, профес­сиональные вредности и т. п. Важное значе­ние имеет сбалансированное и рациональное питание, поскольку с пищей в организм пос­тупают вещества, необходимые для синтеза иммуноглобулинов, для построения иммунекомпетентных клеток и их функциони­рования. Особенно важно, чтобы в рационе присутствовали незаменимые аминокислоть и витамины, особенно А и С. Значительное влияние на иммунный ста­тус организма оказывают жилищно-бытовые условия. Проживание в плохих жилищных условиях ведет к снижению общей физиоло­гической реактивности, соответственно иммунореактивности, что нередко сопровож­дается повышением уровня инфекционной заболеваемости. Большое влияние на иммунный статус ока­зывают профессиональные вредности, пос­кольку человек проводит на работе значи­тельную часть своей жизни. К производс­твенным факторам, которые могут оказывать неблагоприятное воздействие на организм и снижать иммунореактивность, относят иони­зирующую радиацию, химические вещества, микробы и продукты их жизнедеятельности, температуру, шум, вибрацию и т. д. Источники радиации получили в настоящее время очень широкое распространение в различных от­раслях промышленности (энергетика, горно­химическая, аэрокосмическая и др.). Неблагоприятное влияние на иммунный статус оказывают соли тяжелых металлов, аро­матические, алкилирующие соединения и дру­гие химические вещества, в том числе моющие средства, дезинфектанты, пестициды, ядохи­микаты, широко применяемые в практике. Таким профессиональным вредностям подвер­жены работники химических, нефтехимичес­ких, металлургических производств и др. Неблагоприятное влияние на иммунный статус организма оказывают микробы и про­дукты их жизнедеятельности (чаще всего бел­ки и их комплексы) у работников биотехно­логических производств, связанных с произ­водством антибиотиков, вакцин, ферментов, гормонов, кормового белка и др. Такие факторы, как низкая или высокая температура, шум, вибрация, недостаточная освещенность, могут снижать иммунореак­тивность, оказывая опосредованное действие на иммунную систему через нервную и эндок­ринную системы, которые находятся в тесной взаимосвязи с иммунной системой. ^ Глобальное действие на иммунный статус человека оказывают экологические факторы, в первую очередь, загрязнение окружающей среды радиоактивными веществами (отра­ботанным топливом из ядерных реакторов, утечка радионуклидов из реакторов при ава­риях), широкое применение пестицидов в сельском хозяйстве, выбросами химических предприятий и автотранспорта, биотехноло­гических производств. ^ На иммунный статус оказывают влияние различные диагностические и лечебные ме­дицинские манипуляциилекарственная те­рапия, стресс. Необоснованное и частое при­менение рентгенографии, радиоизотопного сканирования может влиять на иммунную систему. Иммунореактивность изменяет­ся после травм и хирургических операций. Многие лекарственные препараты, в том чис­ле антибиотики, способны оказывать побоч­ное иммунодепрессивное действие, особенно при длительном приеме. Стресс приводит к нарушениям в работе Т-системы иммунитета, действуя, в первую очередь, через ЦНС.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]