
- •Химические основы каталитического крекинга.
- •Общая схема реакций крекинга углеводородов.
- •Катализаторы каталитического крекинга.
- •Характеристика некоторых зарубежных катализаторов крекинга нефтяных фракций
- •Катализаторы дожига оксида углерода.
- •Катализаторы связывания оксидов серы и азота.
- •Условия осуществления процесса каталитического крекинга.
- •Гидрокрекинг вакуумных дистиллятов.
- •Деасфальтизация сырья с помощью растворителей.
- •Селективная очистка сырья.
- •Адсорбционно-каталитическая очистка остаточного сырья (процесс «ако»).
- •Каталитический крекинг дистиллятного сырья.
- •Особенности каталитического крекинга остаточного сырья.
- •Промышленные установки каталитического крекинга остаточного сырья.
- •Список использованной литературы
Катализаторы дожига оксида углерода.
Процесс окисления кокса при регенерации катализаторов крекинга представляет собой совокупность последовательных реакций образования и распада углерод-кислородных комплексов с выделением продуктов окисления. Количество образующихся продуктов окисления, а количество выделяющегося тепла в регенераторе зависит от многих факторов, из которых определяющими являются состав коксовых отложений и глубина окисления СО в СО2. Первичная реакция окисления коксовых отложений (распада поверхностных углерод-кислородных комплексов) дает практически постоянное соотношение СО2 /СО≈1,0. Однако образующийся СО может реагировать с избытком кислорода, превращаясь в СО2 с выделением дополнительного количества тепла.
Лучшие результаты дает способ регенерации с использованием каталитического дожига СО в присутствии специальных катализаторов. В качестве таких катализаторов используют металлы-окислители (предпочтительно металлы платиновой группы), которые либо вводят в состав катализаторов, либо применяют в виде твердых добавок, либо в виде жидких добавок, подаваемых вместе с сырьем.
Совершенствование процесса промотированного окисления СО ведется в направлении использования различных окислителей и способов их введения в зону регенерации.
При использовании в качестве окислителя оксидов Cu, Cr, V, Mn, Ti, Fe, Bi, Sn в количестве порядка 1% от катализатора в установке крекинга объемное соотношение СО2/СО в газах регенерации повышается с 1 до 4. Однако в результате значительного содержания в системе активного металла снижается селективность катализатора крекинга по коксу и повышается выход газа и кокса. Значительно эффективнее металлы платиновой группы.
Активный компонент может входить в состав катализатора крекинга, а также может быть нанесен на твердый неорганический носитель и применяться в виде добавки к основному катализатору. Наиболее перспективно использование промоторов окисления в виде отдельных добавок, так как введение твердого промотора в систему независимо от катализатора позволяет с максимальной гибкостью управлять процессом окисления СО в регенераторе. В качестве носителей таких промоторов используют оксиды Al, Si, Ti, Zn, Mg, их смеси, глины, аморфные и кристаллические алюмосиликаты. Окислительная активность промотора проявляется сразу же после его загрузки в реактор; полное окисление СО достигается через 8-10 минут после поступления промотора в систему.
Катализаторы связывания оксидов серы и азота.
При каталитическом крекинге сырья с высоким содержанием серы и азота возникает проблема улавливания из дымовых газов оксидов серы (SOx) и азота (NOx).
Содержание серы в коксе может меняться от 0,4 до 4,4% мас. В среднем 5% мас. серы сырья переходит в кокс и выбрасывается с дымовыми газами регенерации катализатора в виде SOx . Чем больше серы в сырье, тем больше ее в коксе.
При крекинге малосернистого сырья (до 1%мас. серы) содержание SOx в дымовых газах не превосходит 500 мл/м3, но с повышением содержания серы до 1,65% мас. может превышать 2 000мл/м3.
Из технологических приемов, используемых на установках ККФ, снижению выбросов SOx способствуют: уменьшение содержания серы в сырье, снижение глубины превращения, доли рисайкла, повышение расхода пара на отпарку, подачи воздуха в регенератор, температуры регенерации, введение промотора дожига СО. Наиболее экономичным способом очистки дымовых газов от SOx считается использование бифункциональных катализаторов или добавок. Оксиды ряда металлов образуют с SOx стойкие сульфаты, которые в реакторе восстанавливаются до исходного оксида металла и сероводорода, сероводород уходит из реактора с продуктами реакции и отделяется с сухим газом. Рациональнее же бифункциональных катализаторов использовать каталитически неактивные добавки – они не так закоксовываются, и количество добавки можно регулировать независимо от догрузки катализатора. Стоимость очистки с добавками в несколько раз меньше, чем скрубберная очистка или гидроочистка сырья.
При горении кокса в регенераторе от 20 до 90% содержащегося нем азота превращается в NOx и выбрасывается с дымовыми газами. При этом выбросы с установок ККФ в США от общего количества выбросов NOx , на НПЗ составляют: на установках, оборудованных котлами дожига СО – 13%, на остальных – 3%. В странах ЕС выбросы NOx с 1980 г. по 1995 г. снижены на 40%.
Основные факторы, влияющие на процесс каталитического крекинга.
Качество сырья.
Основным сырьем современных промышленных установок каталитического крекинга являются атмосферные и вакуумные дистилляты первичной перегонки нефти. В зависимости от фракционного состава дистиллятное сырье можно отнести к одной из следующих групп.
Первая группа – легкое сырье. К этой группе относятся дисилляты первичной перегонки нефти (керосино-газойлевые и легкие вакуумные погоны). Средняя температура их кипения составляет 260-280ºС, относительная плотность 0,830-0,870, средняя молекулярная масса 190-220. Керосино-газойлевые дистилляты прямой перегонки являются хорошим сырьем для производства высокооктановых бензинов, так как дают большие выходы бензинов при малом коксообразовании.
Вторая группа – тяжелое дистиллятное сырье (наиболее распространенный вариант как в России, так и за рубежом). К этой группе относятся вакуумные дистилляты, выкипающие при температурах от 300 до 560ºС или в несколько узких пределах, а также сырье вторичного происхождения, получаемое на установках термического крекинга и коксования. Их средняя молекулярная масса приблизительно в 1,5 раза выше, чем у легких видов сырья (порядка 280-330). В противоположность легкому сырью, тяжелое дистиллятное сырье перед направлением в реактор или в узел смешения с катализатором в парообразное состояние переводят не целиком. Тяжелые дистилляты с относительной плотностью 0,880-0,920 также, используются для производства автомобильных бензинов.
Третья группа – остаточное сырье – мазуты, деасфальтизаты, тяжелые продукты других термокаталитических и термических процессов. Такое сырье содержит высокие концентрации серы, азота, тяжелых металлов и смол и требует предварительного облагораживания.
Соединения, содержащиеся в сырье крекинга, можно условно разделить на компоненты, вызывающие только повышенное коксоотложение на катализаторе и на компоненты, вызывающие обратимое или необратимое дезактивирование катализатора. К первым относятся полициклические ароматические углеводороды и смолы; содержание этих веществ повышается по мере утяжеления фракционного состава сырья. Косвенной характеристикой склонности сырья к коксообразованию при каталитическом крекинге может служить его коксуемость, не превышающая 0,2-0,3%. К компонентам, дезактивирующим катализатор, относятся азотистые и сернистые соединения, а также тяжелые металлы. Содержание азота в вакуумных газойлях достигает 0,2%.
Исследование влияния азотистых соединений на результаты каталитического крекинга нефтяных дистиллятов показало, что при добавлении в сырье крекинга пиридиновых оснований и хинолина (представляют собой гетероциклические соединения с атомами азота в одном из колец, с общим числом колец от одного до трех) выходы газа и бензиновых фракций понижаются, а коксообразование повышается в 1,5-2 раза по сравнению с крекингом исходного сырья. Установлено, что незначительное добавление азотистых оснований к дистиллятным фракциям заметно снижает выход продуктов каталитического крекинга и октановое число бензинов. Поэтому весьма важно контролировать содержание азотистых соединений в сырье каталитического крекинга и при необходимости снижать его, например, путем гидроочистки.
Сернистые соединения содержатся в вакуумных дистиллятах в количествах, на порядок и более превышающих содержание соединений азота, и представлены в основном динафтотиофенами, бензтиофенами, нафтобензтиофенами и другими сложными структурами тиофенового ряда, а также сульфидами.
С повышением пределов кипения нефтяных фракций в последних возрастает концентрация как азотистых, так и сернистых соединений.
Вредное влияние на катализаторы крекинга оказывают тяжелые металлы (особенно – ванадий и никель). Эти металлы содержатся в нефтях в виде металлоорганических соединений. Концентрация металлоорганических соединений повышается по мере утяжеления фракций. В процессе крекинга эти металлы откладываются на поверхности катализатора, в результате его активность и избирательность снижаются. Так, никель стимулирует образование кокса и катализирует реакции дегидрирования с обогащением газа водородом. Избыточное коксообразование вызывают и другие металлы (кобальт, железо и др.).
Помимо тяжелых металлов в ряде случаев на промышленных установках цеолитсодержащие катализаторы загрязняются щелочными металлами. Активность цеолитсодержащего катализатора резко уменьшается при увеличении отложения натрия на катализаторе.
Комбинированное воздействие на катализатор азота, серы, смолистых компонентов и тяжелых металлов существенно снижает выход целевых продуктов при крекинге, к тому же наличие сернистых соединений обусловливает повышенное содержание серы в получаемых дистиллятах. Отсюда очевидна целесообразность подготовки сырья перед каталитическим крекингом с помощью гидроочистки и других методов (деасфальтизация, селективная очистка, адсорбционно-каталитическая очистка).
При необходимости получения бензина, содержащего до 0,01% мас. серы, требуется очистка вакуумного дистиллята до остаточного содержания серы порядка 0,1 мас.
В ряде случаев каталитическому крекингу возможно подвергать дистилляты вторичного происхождения – газойли процессов коксования, висбрекинга, термического крекинга. Эти виды сырья характеризуются наличием повышенных количеств непредельных и ароматических углеводородов, серы и азота. Поэтому их переработку осуществляют в смеси с прямогонным сырьем.
Благоприятным сырьем для крекинга являются дистилляты гидрокрекинга, содержащие весьма низкие концентрации серы, азота, тяжелых металлов и коксообразующих компонентов.