
- •Часть II. Основы процессов защиты гидросферы от загрязнений
- •Составители: е. С. Гиматова, и. Г. Кобзарь, в. В. Савиных Ульяновск 2004
- •Главные загрязнители воды
- •Приоритетные загрязнители водных экосистем по отраслям промышленности
- •3.1. Фильтрование через плоские перегородки
- •3.2. Фильтрование через объемные перегородки
- •Зависимость значения коэффициентов c и m от режима течения жидкости
- •Параметры и условия процессов обратного осмоса и ультрафильтрации
- •3. Десорбция, дезодорация, дегазация
- •Электрокоагуляция
- •Контрольные вопросы
- •Значения максимальных координационных чисел (молекулярной формы) различных соединений на линии насыщения
- •Температура начала выпадения кристаллов из раствора
- •4.1. Метод жидкофазного окисления
- •4.2. Метод парафазного каталитического окисления
- •4.3. Огневой метод
- •Химические реакции нейтрализации
- •Условия применения способов нейтрализации кислых сточных вод
- •1.1. Смешивание кислых и щелочных вод
- •1.2. Реагентная нейтрализация
- •1.3. Фильтрование через нейтрализующие материалы
- •1.4. Процесс нейтрализации кислыми газами
- •Процессы окисления
- •2.1. Окисление хлором и его соединениями
- •2.2. Пероксид водорода как окислитель
- •2.3. Кислород воздуха как окислитель
- •2.4. Пиролюзит как окислитель Пиролюзит – это природный материал, содержащий MnO2. Очистку проводят фильтрацией через слой этого материала или в аппаратах с мешалкой.
- •2.5. Озонирование
- •Кинетика процессов прямого окисления подчиняется уравнению
- •3. Процессы восстановления
- •Химические методы удаления
- •Данные начала и конца осаждения различных катионов
- •1. Процессы биохимического окисления
- •Влияние различных факторов на скорость
- •3. Анаэробное биохимическое окисление
- •Теоретические основы защиты окружающей среды
- •Часть II. Основы процессов защиты
- •Гидросферы от загрязнений
- •432027, Г. Ульяновск, ул. Сев. Венец, д. 32
Влияние различных факторов на скорость
БИОХИМИЧЕСКОГО ОКИСЛЕНИЯ
Скорость окисления зависит от концентрации органических веществ, равномерности их поступления и от других примесей в среде. Кроме того, на скорость биохимических реакций влияет режим перемешивания среды, содержание кислорода и биогенных элементов в воде, температура и рН среды, а также содержание тяжелых металлов и минеральных солей.
Перемешивание (турбулизация) среды способствует распаду хлопьев примесей на более мелкие и увеличивает скорость поступле-ния питательных веществ и кислорода к микроорганизмам. Интенсив-ность перемешивания зависит от количества подаваемого воздуха.
С повышением температуры среды скорость биохимических реакций возрастает. На практике ее поддерживают в интервале 20–30 С. При повышении температуры выше этих пределов уменьша-ется растворимость кислорода, возрастает гибель микроорганизмов; при снижении температуры замедляется скорость процессов биоокис-ления, адаптационных свойств микроорганизмов к изменившимся усло-виям, ухудшаются показатели процессов нитрификации, флокуляции и осаждения.
Наличие солей тяжелых металлов приводит к снижению полезной биохимической активности в среде и развитию вредных форм бактерий. По степени токсичности тяжелые металлы можно расположить в следующем порядке:
Sb > Ag > Cu > Hg > Co Ni Pb > Cr3+ V Cd > Zn > Fe.
Отрицательное влияние на скорость биохимического окисления оказывает повышенное содержание минеральных веществ (выше допустимых концентраций).
Абсорбция и потребление кислорода (аэробное окисление). Кислород является наиболее важным элементом для биохимического окисления органических веществ. Микроорганизмы используют кислород только в растворенном в воде виде. Процессы аэрации, перемешивания и турбулизации среды воздухом являются наиболее эффективными источниками насыщения воды кислородом. Процесс переноса кислорода из газовой среды к клеткам микроорганизмов происходит в два этапа:
перенос O2 из газовых пузырьков в основную массу жидкости;
перенос абсорбированного жидкостью кислорода к клеткам микроорганизмов.
Схематично процесс переноса кислорода к микроорганизмам показан на рис. 15.
Кислород плохо растворим в воде, поэтому скорость абсорбции кислорода будет лимитироваться в основном сопротивлением жидкой фазы. Толщина диффузионного пограничного слоя при обтекании какого-либо тела размером l зависит от коэффициента диффузии D, вязкости в, плотности в и скорости движения среды υв:
,
(195)
Рис. 15. Схема переноса кислорода от пузырьков газа
к микроорганизмам:
А – пузырек газа; Б – скопление микроорганизмов; 1 – пограничный диффузионный слой со стороны газа (1/βг); 2 – поверхность раздела; 3 – пограничный диффузионный слой со стороны жидкости (1/βж); 4 – перенос кислорода от пузырька к микроорганизмам; 5 – пограничный диффузионный слой со стороны жидкости у микроорганизмов (1/βж); 6 – переход кислорода внутрь клеток; 7 – зона реакции между молекулами кислорода с ферментами
Так как микроорганизмы имеют малый размер и движутся со скоростью движения среды, то толщина жидкого диффузионного пограничного слоя у стенок клеток значительно меньше, чем вокруг пузырьков газа, и поэтому он не оказывает заметного сопротивления переносу кислорода. Для плохо растворимых газов коэффициент массопередачи принимают равным коэффициенту массоотдачи (Кж = ж). Поскольку поверхность контакта фаз между воздухом (пузырьки) и водой трудно определить, то на практике используют объемный коэффициент массоотдачи, т.е. ж = к.
Количество абсорбированного водой кислорода можно вычислить по уравнению массоотдачи:
(196)
где М – количество абсорбируемого кислорода, кг/с; v – объемный коэффициент массоотдачи с–1; V – объем воды, м3; Ср, С – равновесная концентрация и концентрация кислорода в основной массе жидкости, кг/м3.
Повышение концентрации кислорода в воде возможно путем повышения v. Этот коэффициент представляет собой произведение действительного коэффициента массоотдачи ж на удельную поверхность контакта фаз . Увеличивая дробление газового потока при аэрации среды, т. е. уменьшая размеры газовых пузырей dп и увеличивая газосодержание в воде г, можно значительно увеличить поверхность контакта фаз и, следовательно, увеличить поступление кислорода в воду. Удельная объемная поверхность контакта фаз равна
.
(197)
Концентрация кислорода в воде зависит от соотношения скоростей абсорбции и потребления его в среде. Поэтому скорость роста концентрации кислорода в воде равна
,
(198)
,
(199)
где Сi – концентрация кислорода в клетке, Qk – расход кислорода.
В реальных условиях вводе устанавливается какая-то стационарная концентрация кислорода Сс, т. е. скорость абсорбции равна скорости потребления:
, (200)
Признаком достаточности аэрации является положительное значение разности (Сс – Скр). Здесь Скр представляет собой критическую концентрацию кислорода в воде, при которой скорость его потребления становится постоянной и не зависит от дальнейшего ее повышения. Эту разность следует поддерживать минимальной, так как, чем ниже Сс, тем больше движущая сила абсорбции ∆С = Ср – Сс.
Для успешного протекания реакций биохимического окисления необходимо присутствие в водной среде биогенных элементов и микроэлементов: N, S, P, K, Mg, Ca, Na, Cl, Fe, Mn, Mo, Ni, Co, Zn, Cu и др. Основными их них являются N, P и K. Содержание их должно быть в необходимых количествах, остальных элементов в воде обычно достаточно.
Недостаток азота в среде тормозит окисление органических примесей и приводит к образованию слабооседающих взвесей. Недос-таток фосфора приводит к образованию труднооседающих взвесей (из-за развития нитчатых бактерий), большему загрязнению среды и, как следствие, снижению интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме, в которой они находятся в микробных клетках: азот – в форме аммонийной группы NH4+; фосфор и калий в виде солей фосфорных кислот или калийных удобрений.