Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
RK2.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.3 Mб
Скачать

34. Частные производные высших порядков

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 сентября 2010; проверки требуют 6 правок.

Пусть задана функция f(x, y). Тогда каждая из ее частных производных(если они, конечно, существуют)   и  , которые называются также частными производными первого порядка, снова являются функцией независимых переменных x, y и может, следовательно также иметь частные производные. Частная производная   обозначается через   или  , а   через   или  . Таким образом,

и, аналогично,

.

Производные   и   называются частными производными второго порядкаОпределение:Частной производной второго порядка от функции z=f(x;y) дифференцируемой в области D,называется первая производная от соответствующей частной производной. Рассматривая частные производные от них, получим всевозможные частные производные третьего порядка:   и т. д.

35. Производная по направлению

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Производная.

В математическом анализепроизводная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию   от   аргументов в окрестности точки  . Для любого единичного вектора   определим производную функции   в точке   по направлению   следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора  .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

[править]Связь с градиентом

Производную по направлению дифференцируемой по совокупности переменных функции можно рассматривать как проекцию градиента функции на это направление, или иначе, как скалярное произведение градиента на орт направления:

,

где   — орт направления. Отсюда следует, что максимальное значение в точке производная по направлению принимает, если направление совпадает с направлением градиента функции в данной точке. Также видно, что значение производной по направлению не зависит от длины вектора  .

36.апомним, что в случае функции одного переменного   формула Тейлора имеет вид

   

   

где    -- фиксированная точка, в которой ведётся разложение,    -- текущая точка, а    -- некоторая точка отрезка между точками   и   . При этом предполагается, что функция   имеет производную   -го порядка, определённую в некоторой окрестности точки   .

Последнее слагаемое формулы, то есть   называется остаточным членом формулы Тейлора, а многочлен от   , равный

называется многочленом Тейлора функции   в точке   .

Наша цель -- получить формулу для функции   , зависящей от   переменных   , частным случаем которой при   будет выписанная выше формула Тейлора для функции одного переменного.

37. Определение 1.11 Пусть задана функция двух переменных z=z(x,y), (x,y) D. ТочкаM0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек

то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек

то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема 1.3 (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0 D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то

Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом  к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение 1.12.

Если в точке M0 выполняются условия (1.41), то она называется стационарной точкой функции z (x,y).

Теорема 1.4 (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y) D, которая имеет частные производные второго порядка в некоторой окрестности точки M0(x0,y0) D. Причем M0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

Если:

Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм), которые в этом пособии не рассматриваются.

38.Говорят, что функция   имеет максимум в точке  , т.е. при   ,если   для всех точек  , достаточно близких к точке   и отличных от неё.

Говорят, что функция   имеет минимум в точке  , т.е. при  , если   для всех точек  , достаточно близких к точке   и отличных от неё.

Максимум и минимум функции называются экстремумами функции.

Теорема (необходимое условие экстремума функции двух переменных). Если функция   достигает экстремума при  , то каждая частная производная первого порядка от   или обращается в нуль при этих значениях аргументов, или не существует.

Теорема (достаточное условие экстремума функции двух переменных). Пусть в некоторой области, содержащей точку   функция   имеет непрерывные частные производные до третьего порядка включительно. Пусть, кроме того, точка   является критической точкой функции  , т.е. , тогда при  : 1)   имеет максимум, если дискриминант   и  , где  ; 2)   имеет минимум, если дискриминант   и  ; 3)   не имеет ни минимума, ни максимума, если дискриминант  ; 4) если   , то экстремум может быть, а может и не быть (требуется дополнительное исследование).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]