
- •Основы электроники Учебное пособие
- •Предисловие
- •Оглавление
- •Введение
- •Полупроводниковые приборы
- •1.1 Электропроводность радиоматериалов
- •1.2 Кристаллическое строение и зонная структура полупроводников
- •1.3 Электропроводность собственных полупроводников
- •1.4 Электропроводность примесных полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Неравновесное состояние полупроводников
- •1.7 Фундаментальная система уравнений для полупроводников
- •1.8 Электронно-дырочные переходы
- •1.9 Полупроводниковые диоды
- •1.11 Полевые транзисторы
- •1.12 Биполярные транзисторы
- •1.13 Свойства и применение транзисторов
- •1.14 Цифровые ключи на транзисторах
- •1.15 Тиристоры
- •1.16 Приборы силовой электроники
- •1.17 Фотоэлектрические и излучающие приборы
- •Контрольные вопросы к разделу 1 Полупроводниковые приборы
- •2 Элементы и узлы аналоговых устройств
- •2.1 Классификация аналоговых устройств
- •2.2 Усилители
- •2.3 Интегральные операционные усилители
- •2.4 Обратная связь в усилителях
- •2.5 Функциональные узлы на основе оу
- •2.6 Электронные регуляторы и аналоговые ключи
- •Контрольные вопросы к разделу 2 Элементы и узлы аналоговых устройств
- •3 Цифровые интегральные микросхемы
- •3.1 Общие сведения
- •3.2 Основы алгебры логики
- •3.3 Параметры цифровых интегральных микросхем
- •3.4 Семейства цифровых имс
- •3.5 Комбинационные устройства
- •3.6 Триггеры
- •3.7 Счетчики
- •3.8 Регистры
- •Контрольные вопросы к разделу 3 Элементы и узлы цифровых устройств
- •4 Микроэлектронные преобразователи сигналов
- •4.1 Классификация преобразователей
- •4.2 Аналоговые перемножители сигналов
- •4.3 Микроэлектронные компараторы и преобразователи уровня
- •4.4 Микроэлектронные выпрямители и стабилизаторы напряжения
- •4.5 Цифро-аналоговые преобразователи
- •4.6 Аналого-цифровые преобразователи
- •4.7 Импульсные и нелинейные устройства
- •Контрольные вопросы к разделу 4 Микроэлектронные преобразователи и генераторы импульсных сигналов
- •5 Большие и сверхбольшие интегральные схемы
- •5.1 Поколения микропроцессоров
- •5.2 Структуры микропроцессоров
- •5.3 Микроэвм
- •5.4 Запоминающие устройства
- •5.5 Оперативные запоминающиеся устройства
- •5.6 Постоянные запоминающие устройства
- •5.7 Репрограммируемые постоянные запоминающие устройства
- •5.8 Цифроаналоговые преобразователи
- •5.9 Аналого-цифровые преобразователи
- •Большие и сверхбольшие интегральные схемы
- •6 Основы наноэлектроники
- •6.1 Физические основы наноэлектроники
- •6.2 Основные способы создания наноструктур
- •6.3 Квантовые наноструктуры: ямы, нити, точки
- •6.4 Нанодиоды
- •6.5 Нанотранзисторы
- •6.6 Оптоэлектронные приборы на наноструктурах
- •6.7 Квантово – точечные клеточные автоматы и беспроводная электронная логика
- •Контрольные вопросы к разделу 6 Основы Наноэлектроники
- •7 Приборы функциональной электроники
- •7.1 Введение в функциональную электронику
- •7.2 Приборы с зарядовой связью
- •7.3 Фотоприемные пзс
- •7.4 Кмоп – фотодиодные сбис
- •7.5 Акустоэлектронные приборы
- •7.6 Магнитоэлектронные приборы
- •Контрольные вопросы к разделу 7 Приборы функциональной электроники
- •Список литературы
- •Приложение a (обязательное) Перечень принятых обозначений
- •Приложение б (обязательное) Перечень принятых сокращений
- •Приложение в Задачи по основным темам курса «Электроника»
5.7 Репрограммируемые постоянные запоминающие устройства
Репрограммируемые ПЗУ являются наиболее универсальными устройствами памяти. Структурная схема РПЗУ аналогична схеме ОЗУ (рисунок 5.4). Важной отличительной особенностью РПЗУ является использование в МЯП транзистора специальной конструкции со структурой «металл – нитрид – окисел – полупроводник» (МНОП). Принцип действия такой ячейки памяти основан на обратимом изменении порогового напряжения МНОП транзистора. Например, если сделать UЗИ ПОР >UАШ, то транзистор не будет отпираться адресными импульсами (т. е. не участвует в работе). В то же время другие МНОП транзисторы, у которых UЗИ ПОР < UАШ будут функционировать как обычные МДПТ.
Структура МНОП транзистора с индуцированным каналом р-типа имеет вид в соответствии с рисунком 5.7, (а).
а) |
б) |
Структура |
Характеристики |
Рисунок 5.7 – МНОП транзистор
Здесь диэлектрик состоит из двух слоев: нитрида кремния (Si3N4) и окисла кремния (SiO2). Пороговое напряжение можно менять, подавая на затвор короткие (порядка 100 мкс) импульсы напряжения разной полярности, с большой амплитудой от 30 до 50 В. При подаче импульса +30 В устанавливается пороговое напряжение UЗИ ПОР = –5 В. Это напряжение сохраняется, если использовать транзистор при напряжениях на затворе UЗИ = ±10В. В таком режиме МНОП транзистор работает как обычный МДП транзистор с индуцированным каналом р-типа.
При подаче импульса –30 В пороговое напряжение принимает значение UЗИ ПОР ~20 В, в соответствии с рисунком 5.7, (б). При этом сигналы на входе транзистора UЗИ ± 10 В не могут вывести транзистор из закрытого состояния. Это явление используется в РПЗУ.
В основе работы МНОП транзисторов лежит накопление заряда на границе нитридного и оксидного слоев. Это накопление есть результат неодинаковых токов проводимости в слоях. При большом отрицательном напряжении UЗИ на границе накапливается положительный заряд. Это равносильно введению доноров в диэлектрик и сопровождается увеличением отрицательного порогового напряжения. При большом положительном напряжении UЗИ на границе накапливается отрицательный заряд. Это приводит к уменьшению отрицательного порогового напряжения. При малых напряжениях UЗИ токи в диэлектрических слоях уменьшаются на 10 15 порядков, поэтому накопленный заряд сохраняется в течение тысяч часов, а, следовательно, сохраняется и пороговое напряжение.
Известна и другая возможность построения ячейки памяти для РПЗУ на основе МДП транзисторов с однослойным диэлектриком. Если прикладывать к затвору достаточно большое напряжение, то будет наблюдаться лавинный пробой диэлектрика, в результате чего в нем будут накапливаться электроны. При этом у транзистора изменится пороговое напряжение. Заряд электронов сохраняется в течение тысяч часов. Для того чтобы осуществить перезапись информации, нужно удалить электроны из диэлектрика. Это достигается путем освещения кристалла ультрафиолетовым светом, вызывающим фотоэффект: выбивание электронов из диэлектрика.
При использовании ультрафиолетового стирания удается существенно упростить схему РПЗУ. Обобщенная структурная схема РПЗУ с ультрафиолетовым стиранием выполнена в соответствии с рисунком 5.8, содержит кроме МЯП дешифратор адресных сигналов (ДАС), устройство выбора кристалла (УВК) и буферный усилитель (БУ) для считывания информации.
Рисунок 5.8 – Структура РПЗУ
По приведенной структурной схеме выполнена, в частности, БИС РПЗУ с ультрафиолетовым стиранием типа К573РФ1 емкостью 8192 бита.