
- •Основы электроники Учебное пособие
- •Предисловие
- •Оглавление
- •Введение
- •Полупроводниковые приборы
- •1.1 Электропроводность радиоматериалов
- •1.2 Кристаллическое строение и зонная структура полупроводников
- •1.3 Электропроводность собственных полупроводников
- •1.4 Электропроводность примесных полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Неравновесное состояние полупроводников
- •1.7 Фундаментальная система уравнений для полупроводников
- •1.8 Электронно-дырочные переходы
- •1.9 Полупроводниковые диоды
- •1.11 Полевые транзисторы
- •1.12 Биполярные транзисторы
- •1.13 Свойства и применение транзисторов
- •1.14 Цифровые ключи на транзисторах
- •1.15 Тиристоры
- •1.16 Приборы силовой электроники
- •1.17 Фотоэлектрические и излучающие приборы
- •Контрольные вопросы к разделу 1 Полупроводниковые приборы
- •2 Элементы и узлы аналоговых устройств
- •2.1 Классификация аналоговых устройств
- •2.2 Усилители
- •2.3 Интегральные операционные усилители
- •2.4 Обратная связь в усилителях
- •2.5 Функциональные узлы на основе оу
- •2.6 Электронные регуляторы и аналоговые ключи
- •Контрольные вопросы к разделу 2 Элементы и узлы аналоговых устройств
- •3 Цифровые интегральные микросхемы
- •3.1 Общие сведения
- •3.2 Основы алгебры логики
- •3.3 Параметры цифровых интегральных микросхем
- •3.4 Семейства цифровых имс
- •3.5 Комбинационные устройства
- •3.6 Триггеры
- •3.7 Счетчики
- •3.8 Регистры
- •Контрольные вопросы к разделу 3 Элементы и узлы цифровых устройств
- •4 Микроэлектронные преобразователи сигналов
- •4.1 Классификация преобразователей
- •4.2 Аналоговые перемножители сигналов
- •4.3 Микроэлектронные компараторы и преобразователи уровня
- •4.4 Микроэлектронные выпрямители и стабилизаторы напряжения
- •4.5 Цифро-аналоговые преобразователи
- •4.6 Аналого-цифровые преобразователи
- •4.7 Импульсные и нелинейные устройства
- •Контрольные вопросы к разделу 4 Микроэлектронные преобразователи и генераторы импульсных сигналов
- •5 Большие и сверхбольшие интегральные схемы
- •5.1 Поколения микропроцессоров
- •5.2 Структуры микропроцессоров
- •5.3 Микроэвм
- •5.4 Запоминающие устройства
- •5.5 Оперативные запоминающиеся устройства
- •5.6 Постоянные запоминающие устройства
- •5.7 Репрограммируемые постоянные запоминающие устройства
- •5.8 Цифроаналоговые преобразователи
- •5.9 Аналого-цифровые преобразователи
- •Большие и сверхбольшие интегральные схемы
- •6 Основы наноэлектроники
- •6.1 Физические основы наноэлектроники
- •6.2 Основные способы создания наноструктур
- •6.3 Квантовые наноструктуры: ямы, нити, точки
- •6.4 Нанодиоды
- •6.5 Нанотранзисторы
- •6.6 Оптоэлектронные приборы на наноструктурах
- •6.7 Квантово – точечные клеточные автоматы и беспроводная электронная логика
- •Контрольные вопросы к разделу 6 Основы Наноэлектроники
- •7 Приборы функциональной электроники
- •7.1 Введение в функциональную электронику
- •7.2 Приборы с зарядовой связью
- •7.3 Фотоприемные пзс
- •7.4 Кмоп – фотодиодные сбис
- •7.5 Акустоэлектронные приборы
- •7.6 Магнитоэлектронные приборы
- •Контрольные вопросы к разделу 7 Приборы функциональной электроники
- •Список литературы
- •Приложение a (обязательное) Перечень принятых обозначений
- •Приложение б (обязательное) Перечень принятых сокращений
- •Приложение в Задачи по основным темам курса «Электроника»
5.5 Оперативные запоминающиеся устройства
Типовая структура БИС ОЗУ выполнена в соответствии с рисунком 5.3.
|
а) б)
|
Рисунок 5.3 – Типовая структура БИС ОЗУ |
Рисунок 5.4 – Матрица ячеек памяти |
Основным узлом является матрица ячеек памяти (МЯП), состоящая из n строк с т запоминающими ячейками (образующими разрядное слово) в каждой строке. Информационная емкость БИС памяти определяется по формуле N=nm бит.
Входы и выходы ячеек памяти подключаются к адресным шинам (АШ) и разрядным шинам (РШ). При записи и считывании осуществляется обращение (выборка) к одной или одновременно к нескольким ячейкам памяти. В первом случае используются двухкоординатные матрицы в соответствии с рисунком 5.4, (а), во втором случае матрицы с пословной выборкой (рисунок 5.4,(б)).
Дешифратор адресных сигналов (ДАС) при подаче соответствующих адресных сигналов осуществляет выбор требуемых ячеек памяти. С помощью РШ осуществляется связь МЯП с буферными усилителями записи (БУЗ) и считывания (БУС) информации. Схема управления записью (СУЗ) определяет режим работы БИС (запись, считывание, хранение информации). Схема выбора кристалла (СВК) разрешает выполнение операций записи-считывания данной микросхеме. Сигнал выборки кристалла обеспечивает выбор требуемой БИС памяти в ЗУ, состоящем из нескольких БИС.
Подача управляющего сигнала на вход СУЗ при наличии сигнала выборки кристалла на входе (СВК) осуществляет операцию записи. Сигнал на информационном входе БУЗ (1 или 0) определяет записываемую в ячейку памяти информацию. Выходной информационный сигнал снимается с БУС и имеет уровни, согласующиеся с серийными ЦИС.
Большие интегральные схемы ОЗУ строятся на основе простейших элементов ТТЛ, ТТЛШ, МДП, КМДП, И2Л, ЭСЛ, модифицированных с учетом специфики конкретных изделий. В динамических ячейках памяти чаще всего используются накопительные емкости, а в качестве ключевых элементов — МДП транзисторы.
Выбор элементной базы определяется требованиями к информационной емкости и быстродействию БИС памяти. Наибольшей емкости достигают при использовании логических элементов, занимающих малую площадь на кристалле: и2л, МДП, динамических ЗЯ. Высоким быстродействием обладают БИС с логическими элементами, имеющими малые перепады логических уровней (ЭСЛ, И2Л), а также логические элементы ТТЛШ.
Частотные области применения БИС, использующих различные базовые технические решения, приведены в соответствии с рисунком 5.5.
Рисунок 5.5 – Максимальные частоты переключения БИС различных типов
Благодаря развитию технологии и схемотехники быстродействие элементов непрерывно возрастает, поэтому границы раздела указанных областей с течением времени сдвигаются в область больших рабочих частот.
5.6 Постоянные запоминающие устройства
Схема ПЗУ аналогична схеме ОЗУ, приведенной на рисунке 5.6. Отличия состоят лишь в следующем:
ПЗУ используются только для считывания информации;
- в ПЗУ осуществляется выборка нескольких разрядов одного адреса одновременно (4, 8, 16 разрядов);
- информация, записанная в ПЗУ, не может меняться, и в режиме выборки происходит только ее считывание.
Большие интегральные схемы ПЗУ подразделяются на программируемые изготовителем (с помощью специальных фотошаблонов) и программируемые заказчиком (электрически).
а) |
б) |
в) |
С использованием диодов |
С использованием БТ |
С использованием ПТ |
Рисунок 5.6 – Ячейки памяти ПЗУ
В ПЗУ используется матричная структура: строки образуются адресными шинами АШ, а столбцы – разрядными РШ. Каждая АШ хранит определенный код: заданную совокупность логических 1 и 0. Ячейки памяти имеют виды в соответствии с рисунком 5.6. Однократная запись кода осуществляется с помощью диодов (см. рисунок 5.6, а), которые присоединены между АШ и теми РШ, на которых при считывании должна быть логическая 1. Обычно заказчику поставляют ПЗУ с матрицей, во всех узлах которой имеются диоды.
Суть однократного электрического программирования ППЗУ заключается в том, что пользователь (с помощью специального устройства-программатора) пережигает выводы – перемычки тех диодов, которые находятся в местах расположения логических 0. Пережигание выводов осуществляется путем пропускания через соответствующий диод тока, превышающего допустимое значение.
Диодные ПЗУ отличаются простотой, но имеют существенный недостаток: потребляют значительную мощность. Чтобы облегчить работу дешифратора, вместо диодов используют биполярные и полевые транзисторы (рисунок 5.6, б и в).
При использовании биполярных транзисторов АШ обеспечивает протекание базового тока, который в βб.т.+1 раз меньше эмиттерного, питающего РШ. Следовательно, существенно уменьшается необходимая мощность дешифратора.
Еще больший выигрыш обеспечивает применение МДП транзисторов, так как цепь затвора практически не потребляет мощности. Здесь используется не пережигание выводов, а отсутствие металлизации затвора у транзисторов, обеспечивающих считывание логических 0 в разрядной шине.