
- •Основы электроники Учебное пособие
- •Предисловие
- •Оглавление
- •Введение
- •Полупроводниковые приборы
- •1.1 Электропроводность радиоматериалов
- •1.2 Кристаллическое строение и зонная структура полупроводников
- •1.3 Электропроводность собственных полупроводников
- •1.4 Электропроводность примесных полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Неравновесное состояние полупроводников
- •1.7 Фундаментальная система уравнений для полупроводников
- •1.8 Электронно-дырочные переходы
- •1.9 Полупроводниковые диоды
- •1.11 Полевые транзисторы
- •1.12 Биполярные транзисторы
- •1.13 Свойства и применение транзисторов
- •1.14 Цифровые ключи на транзисторах
- •1.15 Тиристоры
- •1.16 Приборы силовой электроники
- •1.17 Фотоэлектрические и излучающие приборы
- •Контрольные вопросы к разделу 1 Полупроводниковые приборы
- •2 Элементы и узлы аналоговых устройств
- •2.1 Классификация аналоговых устройств
- •2.2 Усилители
- •2.3 Интегральные операционные усилители
- •2.4 Обратная связь в усилителях
- •2.5 Функциональные узлы на основе оу
- •2.6 Электронные регуляторы и аналоговые ключи
- •Контрольные вопросы к разделу 2 Элементы и узлы аналоговых устройств
- •3 Цифровые интегральные микросхемы
- •3.1 Общие сведения
- •3.2 Основы алгебры логики
- •3.3 Параметры цифровых интегральных микросхем
- •3.4 Семейства цифровых имс
- •3.5 Комбинационные устройства
- •3.6 Триггеры
- •3.7 Счетчики
- •3.8 Регистры
- •Контрольные вопросы к разделу 3 Элементы и узлы цифровых устройств
- •4 Микроэлектронные преобразователи сигналов
- •4.1 Классификация преобразователей
- •4.2 Аналоговые перемножители сигналов
- •4.3 Микроэлектронные компараторы и преобразователи уровня
- •4.4 Микроэлектронные выпрямители и стабилизаторы напряжения
- •4.5 Цифро-аналоговые преобразователи
- •4.6 Аналого-цифровые преобразователи
- •4.7 Импульсные и нелинейные устройства
- •Контрольные вопросы к разделу 4 Микроэлектронные преобразователи и генераторы импульсных сигналов
- •5 Большие и сверхбольшие интегральные схемы
- •5.1 Поколения микропроцессоров
- •5.2 Структуры микропроцессоров
- •5.3 Микроэвм
- •5.4 Запоминающие устройства
- •5.5 Оперативные запоминающиеся устройства
- •5.6 Постоянные запоминающие устройства
- •5.7 Репрограммируемые постоянные запоминающие устройства
- •5.8 Цифроаналоговые преобразователи
- •5.9 Аналого-цифровые преобразователи
- •Большие и сверхбольшие интегральные схемы
- •6 Основы наноэлектроники
- •6.1 Физические основы наноэлектроники
- •6.2 Основные способы создания наноструктур
- •6.3 Квантовые наноструктуры: ямы, нити, точки
- •6.4 Нанодиоды
- •6.5 Нанотранзисторы
- •6.6 Оптоэлектронные приборы на наноструктурах
- •6.7 Квантово – точечные клеточные автоматы и беспроводная электронная логика
- •Контрольные вопросы к разделу 6 Основы Наноэлектроники
- •7 Приборы функциональной электроники
- •7.1 Введение в функциональную электронику
- •7.2 Приборы с зарядовой связью
- •7.3 Фотоприемные пзс
- •7.4 Кмоп – фотодиодные сбис
- •7.5 Акустоэлектронные приборы
- •7.6 Магнитоэлектронные приборы
- •Контрольные вопросы к разделу 7 Приборы функциональной электроники
- •Список литературы
- •Приложение a (обязательное) Перечень принятых обозначений
- •Приложение б (обязательное) Перечень принятых сокращений
- •Приложение в Задачи по основным темам курса «Электроника»
1.15 Тиристоры
Тиристором называется электропреобразовательный полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или более p-n-переходами, который может перключаться из закрытого состояния в открытое и наоборот.
Основные характеристики и УГО тиристоров приведены в таблице 1.10. Структуры основных типов тиристоров и их ВАХ с участками отрицательного дифференциального сопротивления имеет вид в соответствии с рисунками 1.57 и 1.58.
|
|
а) структура и схема включения |
б) ВАХ с участками отрицательного дифференциального сопротивления |
Рисунок 1. 57 – Динистор |
|
|
а) структура и схема включения |
б) ВАХ с участками отрицательного дифференциального сопротивления |
Рисунок 1.58 – Тринистор |
Таблица 1.10 – Основные типы тиристоров
Наименование |
УГО |
Характеристика |
Тиристор диодный, запираемый в обратном направлении.
|
|
|
Тиристор диодный, проводящий в обратном направлении
|
|
|
Тиристор диодный симметричный |
|
|
Тиристор триодный, запираемый в обратном направлении, с управлением: - по аноду
- по катоду
|
|
|
|
||
Тиристор триодный выключеный, запираемый в обратном направлении, с управлением: - по аноду -по катоду
|
|
|
|
||
Тиристор триодный, проводящий в обратном направлении, с управлением: -по аноду -по катоду
|
|
|
|
||
Тиристор триодный симметричный - триак |
|
|
Простейшим тиристором является динистор — неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n в соответствии с рисунком 1.58. Здесь, как и у других типов тиристоров, крайние p-n-переходы называются эмиттерными, а средний p-n-переход — коллекторным. Внутренние области структуры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней p-областью — анодом.
При включении динистора по схеме, соответствующей рисунку 1.58, коллекторный p-n-переход закрыт, а эмиттерные переходы открыты. Сопротивления открытых переходов малы, поэтому почти все напряжение источника питания приложено к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает малый ток (участок 1 на ВАХ).
Если увеличивать напряжение источника питания, ток тиристора увеличивается незначительно, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении UВКЛ в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на ВАХ). В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области — избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциальные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинообразный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновременно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.
После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4 на ВАХ). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении.
При уменьшении напряжения источника питания восстанавливается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд. Напряжение Uвкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независимого источника управляющего напряжения (UУПР). Тиристор со вспомогательным управляющим электродом называется триодным, или тринисторным. Схема включения тринистора показана в соответствии с рисунком 1.46. Возможность снижения напряжения UВКЛ при росте тока управления, показывает семейство ВАХ, изображенных в таблице 1.5.
Если к тиристору приложить напряжение питания, противоположной полярности, то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода. При очень больших обратных напряжениях наблюдается необратимый пробой тиристора.
В отличие от рассмотренных несимметричных тиристоров в симметричных обратная ветвь ВАХ имеет вид прямой ветви. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением пятислойных структур с четырьмя p-n-переходами.
Тиристоры имеют широкий диапазон применений (управляемые выпрямители, генераторы импульсов и др.), выпускаются с рабочими токами от долей ампера до тысяч ампер и с напряжениями включения от единиц до тысяч вольт.