Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AI.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.73 Mб
Скачать

[Править]Определение

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения   координаты и среднеквадратического отклонения  импульса, мы найдем что:

,

где ħ — приведённая постоянная Планка.

Отметим, что это неравенство даёт несколько возможностей — состояние может быть таким, что   может быть измерен с высокой точностью, но тогда   будет известен только приблизительно, или наоборот   может быть определён точно, в то время как   — нет. Во всех же других состояниях и  , и   могут быть измерены с «разумной» (но не произвольно высокой) точностью.

[Править]Варианты и примеры [править]Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме он применим к каждой паресопряжённых переменных. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которая будет приведена далее.

Теорема. Для любых самосопряжённых операторов  и  , и любого элемента   из   такого, что   и   оба определены (то есть, в частности,   и   также определены), имеем:

Это прямое следствие неравенства Коши — Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости, впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор   называют коммутатором   и   и обозначают как  . Он определен для тех  , для которых определены оба   и  .

Из соотношения Робертсона — Шрёдингера немедленно следует соотношение неопределённости Гейзенберга:

Предположим,   и   — две физические величины, которые связаны с самосопряжёнными операторами. Если   и   определены, тогда:

,

где:

— среднее значение оператора величины   в состоянии   системы, и

— оператор стандартного отклонения величины   в состоянии   системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой парыЭрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов   и  , которые имеют один и тот же собственный вектор  . В этом случае   представляет собой чистое состояние, которое является одновременно измеримым для   и  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]