Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TSOP_TsMI.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
82.81 Кб
Скачать

11. история развития локальных сетей

Сегодня уже трудно представить себе, как люди жили когда-то без столь удобного и полезного инструмента, как локальные сети. Однако знало человечество и такие времена. Впервые идея связать несколько независимо работающих компьютеров в единую распределенную вычислительную систему посетила светлые головы инженеров еще в середине 60-х годов XX века. А если говорить более конкретно, то первый успешный эксперимент по передаче дискретных пакетов данных между двумя компьютерами провел в 1965 году молодой исследователь из лаборатории Линкольна Массачусетского технологического института Лари Роберте. Алгоритмы передачи данных, предложенные Робертсом, во многом послужили основой для построенной в 1969 году по инициативе американского «Агентства перспективных научных исследований» (Advanced Research Projects Agency, ARPA) глобальной вычислительной сети ARPANet, а она впоследствии, объединившись с несколькими другими существовавшими на тот момент сетями, стала фундаментом, на котором вырос современный Интернет. Однако и широко использовавшиеся в те времена многотерминальные системы, в которых пользователям предоставлялся доступ к одному головному многофункциональному компьютеру посредством нескольких конечных устройств удаленного подключения — терминалов — по принципу разделения процессорного времени, и глобальные сети, объединявшие между собой мейнфреймы крупных вычислительных центров и лабораторий, являлись лишь предтечей локальных сетей в их нынешнем понимании. Существенный толчок в направлении развития малых локальных сетей дало бурное развитие во второй половине 70-х годов настольных персональных компьютеров. И в авангарде этого процесса стояла фирма Xerox.

Персональные компьютеры Xerox Star были весьма и весьма популярны в начале 80-х годов, во-первых, благодаря сочетанию низкой стоимости и достаточно высокой производительности, во-вторых, потому, что работали они под управлением первой в мире операционной системы с оконным графическим интерфейсом, предоставлявшей пользователю возможность максимально комфортно взаимодействовать с ресурсами ЭВМ, и, наконец, по той простой причине, что разработчики предусмотрели возможность включения нескольких машин Xerox Star в единую сеть. Именно инженер-исследователь фирмы Xerox Роберт Меткалф впервые предложил стандарт организации малых локальных сетей Ethernet, который широко используется при проектировании подобных систем до сих пор. Тем не менее, несмотря на очевидные достоинства персональных компьютеров от Xerox, они были вскоре окончательно вытеснены с рынка изделиями корпорации IBM, впитавшими в себя все перспективные разработки и лучшие технические решения предшественников.

Большие производственные мощности этой компании позволили снизить цены на персональные компьютеры до возможного минимума, и конкурировать с IBM PC стало практически невозможно. Количество локальных сетей росло в геометрической прогрессии, что вскоре привело к необходимости разработки четких стандартов архитектуры распределенных вычислительных систем. Действительно, одна из основных задач локальных сетей заключается не только в передаче данных и организации общего доступа к тем или иным периферийным устройствам, но также и в обеспечении совместной работы оборудования различных производителей. Это, естественно, означает необходимость унификации и стандартизации подходов к построению локальных сетей. Именно в 80-х годах окончательно сформировались основные стандарты распределенных вычислительных систем, такие как Ethernet, Token Ring, ArcNet, FDDI и некоторые другие. Все эти стандарты, а также многие смежные вопросы, связанные с теоретическими и практическими аспектами построения локальных сетей, мы подробно рассмотрим на страницах этой книги.

80-е годы можно назвать эпохой расцвета локальных сетей, поскольку как крупные, так и малые предприятия быстро оценили выгоды от использования этой перспективной технологии. Действительно, локальные сети позволяли осуществлять быстрый обмен данными между различными подразделениями и отделами фирмы, заметно уменьшив объем циркулирующей внутри предприятия бумажной документации. Это позволяло, во-первых, экономить на накладных расходах, а во-вторых, существенно повышало производительность труда. В сочетании с уже существовавшей тогда возможностью передавать данные на значительные расстояния по информационным каналам глобальной сети использование подобных технологий открывало широчайшие возможности не только для оптимизации бизнеса и расширения информационного пространства, но и для осуществления межкорпоративного взаимодействия.

С течением времени стандарты, позволявшие объединять компьютеры в локальные сети, постепенно оптимизировались, увеличивалась пропускная способность каналов связи, эволюционировало программное обеспечение, росла скорость передачи данных. Вскоре локальные сети стали использоваться не только для пересылки между несколькими компьютерами текста и различных документов, но также для передачи мультимедийной информации, такой как звук и изображение. Это открыло возможность организации внутри локальной сети систем видеоконференцсвязи, позволявших пользователям такой системы общаться в режиме реального времени «напрямую», физически находясь в различных помещениях, выполнять совместное редактирование текстов и таблиц, устраивать «виртуальные презентации». Уже сейчас системы компьютерной видеосвязи широко используются крупными коммерческими предприятиями, где служат для организации связи между различными отделами, в военных комплексах для быстрой передачи информации между несколькими абонентами и целыми подразделениями, а в последнее время — и в домашних «настольных» системах, в качестве средства организации досуга. Среди достоинств KB С можно упомянуть относительно низкую стоимость эксплуатации по сравнению с иными существующими на сегодняшний день системами коммуникаций, их многофункциональность, сравнительную легкость в использовании. В процессе работы абоненты видеоконференции в общем случае видят на экранах своих мониторов изображения собеседника и свое собственное, что необходимо для осуществления визуального контроля установленного соединения.

Изображение динамически обновляется со скоростью от 0,5 кадра/с до 15-25 кадров/с в зависимости от скорости (пропускной способности) канала связи и загрузки канала данными. Участники для проведения переговоров используют миниатюрные видеокамеры и микрофоны с достаточно хорошими характеристиками. Речь для передачи по каналу связи оцифровывается. Основными достоинствами компьютерной видеосвязи являются возможности совместной работы с документами и интегрированной информацией (текст, графика, изображение, получаемое с видеокамер участников), а также дистанционный запуск программных приложений на компьютере собеседника. Изображения, получаемые с помощью видеокамер, могут передаваться не только в динамическом режиме (живое видео), но и в статическом. В последнем случае абонент выбирает необходимый кадр, захватывает и передает его по каналу связи в виде файла. В этом случае время передачи кадра не является критичным, и он может быть сформирован и передан со значительно более высоким качеством. Таким образом, участники подобного сеанса видеосвязи видят друг друга, могут разговаривать в дуплексном режиме, передавать цветные изображения графических документов и объектов, снимаемых видеокамерой, совместно редактировать документы, а также документировать процесс переговоров и результаты с помощью видеомагнитофонов и цветных принтеров. В итоге можно сделать вывод о том, что видеоконференцсвязь с успехом заменяет телефон, цветной факс и обеспечивает возможность записи сеанса или его части на видеомагнитофон для последующего анализа или демонстрации третьим лицам, не участвовавшим в сеансе видеосвязи.

Исходя из всего отмеченного выше можно сказать, что видеоконференции весьма перспективны для ведения переговоров между различными отделами одной компании, при согласовании технических вопросов, например, руководства промышленного предприятия с руководством производственного отдела без необходимости созывать совещание и с возможностью автоматически документировать весь ход переговоров с момента установления соединения до момента его разрыва.

Наконец, в начале 90-х годов XX века удешевление и расширение ассортимента конечного оборудования позволили локальным сетям выйти за пределы коммерческого сектора рынка.

Появились небольшие домашние и частные локальные сети, объединявшие несколько компьютеров в одной семье или в пределах одного дома. В последнее время доля малых локальных сетей заметно выросла по отношению к общему количеству работающих в мире распределенных вычислительных систем, что, впрочем, не удивительно, поскольку такие локальные сети позволяют совместно использовать различные устройства, например принтеры, сканеры, цифровые камеры, а также организовывать подключение к Интернету через единственный канал связи, а значит — экономить на оборудовании и комплектующих. Не говоря уже о том, что практически все современные игры имеют возможность одновременного участия в игровом процессе нескольких пользователей, для чего опять же необходима локальная сеть.

Таким образом, локальная сеть — это распределенная вычислительная система, позволяющая всем подключенным к ней компьютерам — узлам или рабочим станциям — обмениваться данными, а также совместно использовать различные аппаратные и программные ресурсы.

Практически все современные локальные сети используют подключение к Интернету либо по коммутируемым каналам связи, либо через непосредственное соединение с высокоскоростной магистралью передачи данных. Да и само появление Интернета было во многом стимулировано развитием локальных сетей, объединявшихся в глобальную вычислительную систему.

12.архитектура сети.

Существует две основных архитектуры сети - это одноранговая (peer-to-peer) и сеть клиент/сервер (client-server). Они имеют значительное отличие друг от друга. Одноранговая сеть. Олицетворение равенства, то есть в этой сети все компьютеры равны. В чем проявляется равенство компьютеров, а в том, что каждый из них может выступать в роли сервера, например, сегодня один является сервером, завтра другой. Сервер - главный компьютер, который предоставляет свои ресурсы другим участникам сети, например, работу с файлами или принтерами. Для организации одноранговой сети требуется непосредственное физическое соединение всех компьютеров коаксиальным кабелем или витой парой через сетевую карту, наличие которой обязательно в каждом из компьютеров. Применение такой архитектуры оправданно в домашних сетях и сетях малых офисов, где количество компьютеров не велико. Сеть клиент/сервер. Работа этой сети устроенна следующим образом: в сети клиент/сервер может быть главным только один или несколько компьютеров (сервер), а все остальные клиенты илирабочие станции. Рабочая станция - это посредник, например, у вас дома организована одноранговая сеть, в ней участвует 3 компьютера один из которых для двух других является сервером. Но в свою очередь для связи с сетью клиент/сервер, он будет играть роль рабочей станции, то есть обеспечивать, для двух других, через себя связь с сервером. Серверы в сети клиент/сервер могут быть разными, например, почтовый сервер, файловый сервер, web - сервер, сервер печати, DNS - сервер (сервер доменных имен) и т.д. Серверы в себе могут объединять несколько видов предоставляемых услуг, все будет зависеть только от мощности того компьютера, который играет роль сервера. Давайте на простом примере рассмотрим работу DNS - сервера. У многих дома есть стационарный телефон. Когда вы хотите кому-то позвонить, то набираете номер телефона. Этот номер, телефон по проводам передает на АТС в цифровом или аналоговом виде, в свою очередь АТС получив номер, проверяет есть ли он в базе, если есть, то соединяет. Такой же принцип и в Интернет, вы посредством браузера, запрашиваете нужный вам адрес, например, www.yandex.ru. DNS - сервер обрабатывает информацию, если этот адрес существует в базе, то происходит соединение и перед вами открывается страница Yandex.

Возникает справедливый вопрос, каким образом можно связать между собой миллионы компьютеров, имеющие разные техническиехарактеристики оборудования, разные операционные системы и программное обеспечение. Для этих целей существует протокол Интернет. Протокол - это свод правил, определяющих взаимодействие абонентов сети и описывающий способ выполнения определенных функций. Самым главным "китом" является протокол TCP (Transmission Control Protocol - Протокол Управления Передачей) на этом протоколе и на протоколе IP (адресный протокол) основана вся сеть Интернет. Протокол TCP выполняет функции - транспорта и гарантирует передачу данных по сети, а протокол IP - это адресация всей сети. Например, вы набрали адрес (сработал протокол IP), до сервера DNS (доменных имен) его доставил протокол TCP и уже DNS - сервер обработав информацию связал вас использую опять же протокол TCP с абонентом.

Интернет не ограничивается только протоколами TCP и IP, существуют и другие не мало важные протоколы. Рассмотрим некоторые из них: Протокол ICMP (Internet Control Message Protocol). Этот протокол отвечает за межсетевые сообщения, с его помощью компьютеры обмениваются информацией, например, доступен ли тот или иной узел, какие ошибки произошли и т.д. Протокол FTP (File Transfer Protocol). С этим протоколом знаком каждый веб-мастер. Это протокол передачи файлов. После создания сайта веб-мастера используют этот протокол для закачки файлов своего сайта на хостинг. Протокол HTTP (Hyper Text Transfer Protocol). С этим протоколом мы сталкиваемся постоянно. Этот протокол нужен для обмена гипертекстовой информацией, то есть он отвечает за передачу HTML страниц в сети. Браузеры с помощью которых пользователи открывают веб-страницы в Интернет, непосредственно являются HTTP - клиентами. Протокол POP (Post Office Protocol). И опять, с этим протоколом знакомы все. Это протокол почтового отделения. Почтовые серверы отправляют почту, а мы ее получаем, благодаря этому протоколу. Протокол SMPT (Simple Mail Transfer Protocol). С помощью этого протокола мы отправляем почту другим пользователям сети. Протокол IMAP. Этот протокол отличается от вышеупомянутого POP лишь тем, что пользователь получает почту не в свой персональный компьютер, а на сервер, где ее и читает. Протокол PPP (Point-to-Point Protocol). Отвечает за конфигурацию, обнаружение ошибок, безопасность при передаче данных. Протокол OSPF (Open Shortest Path First). Этот протокол используют для передачи пакетов в компьютерных сетях.

13. сетевые ос для локальных сетей

Сетевые операционные системы

Структура сетевой операционной системы

Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети в значительной степени автономен, поэтому под сетевой операционной системой в широком смысле понимается совокупность операционных систем отдельных компьютеров, взаимодействующих с целью обмена сообщениями и разделения ресурсов по единым правилам - протоколам. В узком смысле сетевая ОС - это операционная система отдельного компьютера, обеспечивающая ему возможность работать в сети.

Средства управления локальными ресурсами компьютера: функции распределения оперативной памяти между процессами, планирования и диспетчеризации процессов, управления процессорами в мультипроцессорных машинах, управления периферийными устройствами и другие функции управления ресурсами локальных ОС.

Средства предоставления собственных ресурсов и услуг в общее пользование - серверная часть ОС (сервер). Эти средства обеспечивают, например, блокировку файлов и записей, что необходимо для их совместного использования; ведение справочников имен сетевых ресурсов; обработку запросов удаленного доступа к собственной файловой системе и базе данных; управление очередями запросов удаленных пользователей к своим периферийным устройствам.

Средства запроса доступа к удаленным ресурсам и услугам и их использования - клиентская часть ОС (редиректор). Эта часть выполняет распознавание и перенаправление в сеть запросов к удаленным ресурсам от приложений и пользователей, при этом запрос поступает от приложения в локальной форме, а передается в сеть в другой форме, соответствующей требованиям сервера. Клиентская часть также осуществляет прием ответов от серверов и преобразование их в локальный формат, так что для приложения выполнение локальных и удаленных запросов неразличимо.

Коммуникационные средства ОС, с помощью которых происходит обмен сообщениями в сети. Эта часть обеспечивает адресацию и буферизацию сообщений, выбор маршрута передачи сообщения по сети, надежность передачи и т.п., то есть является средством транспортировки сообщений.

В зависимости от функций, возлагаемых на конкретный компьютер, в его операционной системе может отсутствовать либо клиентская, либо серверная части.

На рисунке 1.2 показано взаимодействие сетевых компонентов. Здесь компьютер 1 выполняет роль "чистого" клиента, а компьютер 2 - роль "чистого" сервера, соответственно на первой машине отсутствует серверная часть, а на второй - клиентская. На рисунке отдельно показан компонент клиентской части - редиректор. Именно редиректор перехватывает все запросы, поступающие от приложений, и анализирует их. Если выдан запрос к ресурсу данного компьютера, то он переадресовывается соответствующей подсистеме локальной ОС, если же это запрос к удаленному ресурсу, то он переправляется в сеть. При этом клиентская часть преобразует запрос из локальной формы в сетевой формат и передает его транспортной подсистеме, которая отвечает за доставку сообщений указанному серверу. Серверная часть операционной системы компьютера 2 принимает запрос, преобразует его и передает для выполнения своей локальной ОС. После того, как результат получен, сервер обращается к транспортной подсистеме и направляет ответ клиенту, выдавшему запрос. Клиентская часть преобразует результат в соответствующий формат и адресует его тому приложению, которое выдало запрос.

Первые сетевые ОС представляли собой совокупность существующей локальной ОС и надстроенной над ней сетевой оболочки. При этом в локальную ОС встраивался минимум сетевых функций, необходимых для работы сетевой оболочки, которая выполняла основные сетевые функции. Примером такого подхода является использование на каждой машине сети операционной системы MS DOS (у которой начиная с ее третьей версии появились такие встроенные функции, как блокировка файлов и записей, необходимые для совместного доступа к файлам). Принцип построения сетевых ОС в виде сетевой оболочки над локальной ОС используется и в современных ОС, таких, например, как LANtastic или Personal Ware.

Однако более эффективным представляется путь разработки операционных систем, изначально предназначенных для работы в сети. Сетевые функции у ОС такого типа глубоко встроены в основные модули системы, что обеспечивает их логическую стройность, простоту эксплуатации и модификации, а также высокую производительность. Примером такой ОС является система Windows NT фирмы Microsoft, которая за счет встроенности сетевых средств обеспечивает более высокие показатели производительности и защищенности информации по сравнению с сетевой ОС LAN Manager той же фирмы (совместная разработка с IBM), являющейся надстройкой над локальной операционной системой OS/2.

Одноранговые сетевые ОС и ОС с выделенными серверами

В зависимости от того, как распределены функции между компьютерами сети, сетевые операционные системы, а следовательно, и сети делятся на два класса: одноранговые и двухранговые. Последние чаще называют сетями с выделенными серверами.

Если компьютер предоставляет свои ресурсы другим пользователям сети, то он играет роль сервера. При этом компьютер, обращающийся к ресурсам другой машины, является клиентом. Как уже было сказано, компьютер, работающий в сети, может выполнять функции либо клиента, либо сервера, либо совмещать обе эти функции.

Если выполнение каких-либо серверных функций является основным назначением компьютера (например, предоставление файлов в общее пользование всем остальным пользователям сети или организация совместного использования факса, или предоставление всем пользователям сети возможности запуска на данном компьютере своих приложений), то такой компьютер называется выделенным сервером. В зависимости от того, какой ресурс сервера является разделяемым, он называется файл-сервером, факс-сервером, принт-сервером, сервером приложений и т.д.

Очевидно, что на выделенных серверах желательно устанавливать ОС, специально оптимизированные для выполнения тех или иных серверных функций. Поэтому в сетях с выделенными серверами чаще всего используются сетевые операционные системы, в состав которых входит нескольких вариантов ОС, отличающихся возможностями серверных частей. Например, сетевая ОС Novell NetWare имеет серверный вариант, оптимизированный для работы в качестве файл-сервера, а также варианты оболочек для рабочих станций с различными локальными ОС, причем эти оболочки выполняют исключительно функции клиента. Другим примером ОС, ориентированной на построение сети с выделенным сервером, является операционная система Windows NT. В отличие от NetWare, оба варианта данной сетевой ОС - Windows NT Server (для выделенного сервера) и Windows NT Workstation (для рабочей станции) - могут поддерживать функции и клиента и сервера. Но серверный вариант Windows NT имеет больше возможностей для предоставления ресурсов своего компьютера другим пользователям сети, так как может выполнять более широкий набор функций, поддерживает большее количество одновременных соединений с клиентами, реализует централизованное управление сетью, имеет более развитые средства защиты.

Выделенный сервер не принято использовать в качестве компьютера для выполнения текущих задач, не связанных с его основным назначением, так как это может уменьшить производительность его работы как сервера. В связи с такими соображениями в ОС Novell NetWare на серверной части возможность выполнения обычных прикладных программ вообще не предусмотрена, то есть сервер не содержит клиентской части, а на рабочих станциях отсутствуют серверные компоненты. Однако в других сетевых ОС функционирование на выделенном сервере клиентской части вполне возможно. Например, под управлением Windows NT Server могут запускаться обычные программы локального пользователя, которые могут потребовать выполнения клиентских функций ОС при появлении запросов к ресурсам других компьютеров сети. При этом рабочие станции, на которых установлена ОС Windows NT Workstation, могут выполнять функции невыделенного сервера.

Важно понять, что несмотря на то, что в сети с выделенным сервером все компьютеры в общем случае могут выполнять одновременно роли и сервера, и клиента, эта сеть функционально не симметрична: аппаратно и программно в ней реализованы два типа компьютеров - одни, в большей степени ориентированные на выполнение серверных функций и работающие под управлением специализированных серверных ОС, а другие - в основном выполняющие клиентские функции и работающие под управлением соответствующего этому назначению варианта ОС. Функциональная несимметричность, как правило, вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти. Таким образом, функциональная несимметричность в сетях с выделенным сервером сопровождается несимметричностью операционных систем (специализация ОС) и аппаратной несимметричностью (специализация компьютеров).

В одноранговых сетях все компьютеры равны в правах доступа к ресурсам друг друга. Каждый пользователь может по своему желанию объявить какой-либо ресурс своего компьютера разделяемым, после чего другие пользователи могут его эксплуатировать. В таких сетях на всех компьютерах устанавливается одна и та же ОС, которая предоставляет всем компьютерам в сети потенциально равные возможности. Одноранговые сети могут быть построены, например, на базе ОС LANtastic, Personal Ware, Windows for Workgroup, Windows NT Workstation.

В одноранговых сетях также может возникнуть функциональная несимметричность: одни пользователи не желают разделять свои ресурсы с другими, и в таком случае их компьютеры выполняют роль клиента, за другими компьютерами администратор закрепил только функции по организации совместного использования ресурсов, а значит они являются серверами, в третьем случае, когда локальный пользователь не возражает против использования его ресурсов и сам не исключает возможности обращения к другим компьютерам, ОС, устанавливаемая на его компьютере, должна включать и серверную, и клиентскую части. В отличие от сетей с выделенными серверами, в одноранговых сетях отсутствует специализация ОС в зависимости от преобладающей функциональной направленности - клиента или сервера. Все вариации реализуются средствами конфигурирования одного и того же варианта ОС.

Одноранговые сети проще в организации и эксплуатации, однако они применяются в основном для объединения небольших групп пользователей, не предъявляющих больших требований к объемам хранимой информации, ее защищенности от несанкционированного доступа и к скорости доступа. При повышенных требованиях к этим характеристикам более подходящими являются двухранговые сети, где сервер лучше решает задачу обслуживания пользователей своими ресурсами, так как его аппаратура и сетевая операционная система специально спроектированы для этой цели.

ОС для рабочих групп и ОС для сетей масштаба предприятия

Сетевые операционные системы имеют разные свойства в зависимости от того, предназначены они для сетей масштаба рабочей группы (отдела), для сетей масштаба кампуса или для сетей масштаба предприятия.

Сети отделов - используются небольшой группой сотрудников, решающих общие задачи. Главной целью сети отдела является разделение локальных ресурсов, таких как приложения, данные, лазерные принтеры и модемы. Сети отделов обычно не разделяются на подсети.

Сети кампусов - соединяют несколько сетей отделов внутри отдельного здания или внутри одной территории предприятия. Эти сети являются все еще локальными сетями, хотя и могут покрывать территорию в несколько квадратных километров. Сервисы такой сети включают взаимодействие между сетями отделов, доступ к базам данных предприятия, доступ к факс-серверам, высокоскоростным модемам и высокоскоростным принтерам.

Сети предприятия (корпоративные сети) - объединяют все компьютеры всех территорий отдельного предприятия. Они могут покрывать город, регион или даже континент. В таких сетях пользователям предоставляется доступ к информации и приложениям, находящимся в других рабочих группах, других отделах, подразделениях и штаб-квартирах корпорации.

Главной задачей операционной системы, используемой в сети масштаба отдела, является организация разделения ресурсов, таких как приложения, данные, лазерные принтеры и, возможно, низкоскоростные модемы. Обычно сети отделов имеют один или два файловых сервера и не более чем 30 пользователей. Задачи управления на уровне отдела относительно просты. В задачи администратора входит добавление новых пользователей, устранение простых отказов, инсталляция новых узлов и установка новых версий программного обеспечения. Операционные системы сетей отделов хорошо отработаны и разнообразны, также, как и сами сети отделов, уже давно применяющиеся и достаточно отлаженные. Такая сеть обычно использует одну или максимум две сетевые ОС. Чаще всего это сеть с выделенным сервером NetWare 3.x или Windows NT, или же одноранговая сеть, например сеть Windows for Workgroups.

Пользователи и администраторы сетей отделов вскоре осознают, что они могут улучшить эффективность своей работы путем получения доступа к информации других отделов своего предприятия. Если сотрудник, занимающийся продажами, может получить доступ к характеристикам конкретного продукта и включить их в презентацию, то эта информация будет более свежей и будет оказывать большее влияние на покупателей. Если отдел маркетинга может получить доступ к характеристикам продукта, который еще только разрабатывается инженерным отделом, то он может быстро подготовить маркетинговые материалы сразу же после окончания разработки.

Итак, следующим шагом в эволюции сетей является объединение локальных сетей нескольких отделов в единую сеть здания или группы зданий. Такие сети называют сетями кампусов. Сети кампусов могут простираться на несколько километров, но при этом глобальные соединения не требуются.

Операционная система, работающая в сети кампуса, должна обеспечивать для сотрудников одних отделов доступ к некоторым файлам и ресурсам сетей других отделов. Услуги, предоставляемые ОС сетей кампусов, не ограничиваются простым разделением файлов и принтеров, а часто предоставляют доступ и к серверам других типов, например, к факс-серверам и к серверам высокоскоростных модемов. Важным сервисом, предоставляемым операционными системами данного класса, является доступ к корпоративным базам данных, независимо от того, располагаются ли они на серверах баз данных или на миникомпьютерах.

Именно на уровне сети кампуса начинаются проблемы интеграции. В общем случае, отделы уже выбрали для себя типы компьютеров, сетевого оборудования и сетевых операционных систем. Например, инженерный отдел может использовать операционную систему UNIX и сетевое оборудование Ethernet, отдел продаж может использовать операционные среды DOS/Novell и оборудование Token Ring. Очень часто сеть кампуса соединяет разнородные компьютерные системы, в то время как сети отделов используют однотипные компьютеры.

Корпоративная сеть соединяет сети всех подразделений предприятия, в общем случае находящихся на значительных расстояниях. Корпоративные сети используют глобальные связи (WAN links) для соединения локальных сетей или отдельных компьютеров.

Пользователям корпоративных сетей требуются все те приложения и услуги, которые имеются в сетях отделов и кампусов, плюс некоторые дополнительные приложения и услуги, например, доступ к приложениям мейнфреймов и миникомпьютеров и к глобальным связям. Когда ОС разрабатывается для локальной сети или рабочей группы, то ее главной обязанностью является разделение файлов и других сетевых ресурсов (обычно принтеров) между локально подключенными пользователями. Такой подход не применим для уровня предприятия. Наряду с базовыми сервисами, связанными с разделением файлов и принтеров, сетевая ОС, которая разрабатывается для корпораций, должна поддерживать более широкий набор сервисов, в который обычно входят почтовая служба, средства коллективной работы, поддержка удаленных пользователей, факс-сервис, обработка голосовых сообщений, организация видеоконференций и др.

Кроме того, многие существующие методы и подходы к решению традиционных задач сетей меньших масштабов для корпоративной сети оказались непригодными. На первый план вышли такие задачи и проблемы, которые в сетях рабочих групп, отделов и даже кампусов либо имели второстепенное значение, либо вообще не проявлялись. Например, простейшая для небольшой сети задача ведения учетной информации о пользователях выросла в сложную проблему для сети масштаба предприятия. А использование глобальных связей требует от корпоративных ОС поддержки протоколов, хорошо работающих на низкоскоростных линиях, и отказа от некоторых традиционно используемых протоколов (например, тех, которые активно используют широковещательные сообщения). Особое значение приобрели задачи преодоления гетерогенности - в сети появились многочисленные шлюзы, обеспечивающие согласованную работу различных ОС и сетевых системных приложений.

К признакам корпоративных ОС могут быть отнесены также следующие особенности.

Поддержка приложений. В корпоративных сетях выполняются сложные приложения, требующие для выполнения большой вычислительной мощности. Такие приложения разделяются на несколько частей, например, на одном компьютере выполняется часть приложения, связанная с выполнением запросов к базе данных, на другом - запросов к файловому сервису, а на клиентских машинах - часть, реализующая логику обработки данных приложения и организующая интерфейс с пользователем. Вычислительная часть общих для корпорации программных систем может быть слишком объемной и неподъемной для рабочих станций клиентов, поэтому приложения будут выполняться более эффективно, если их наиболее сложные в вычислительном отношении части перенести на специально предназначенный для этого мощный компьютер - сервер приложений.

Сервер приложений должен базироваться на мощной аппаратной платформе (мультипроцессорные системы, часто на базе RISC-процессоров, специализированные кластерные архитектуры). ОС сервера приложений должна обеспечивать высокую производительность вычислений, а значит поддерживать многонитевую обработку, вытесняющую многозадачность, мультипроцессирование, виртуальную память и наиболее популярные прикладные среды (UNIX, Windows, MS-DOS, OS/2). В этом отношении сетевую ОС NetWare трудно отнести к корпоративным продуктам, так как в ней отсутствуют почти все требования, предъявляемые к серверу приложений. В то же время хорошая поддержка универсальных приложений в Windows NT собственно и позволяет ей претендовать на место в мире корпоративных продуктов.

Справочная служба. Корпоративная ОС должна обладать способностью хранить информацию обо всех пользователях и ресурсах таким образом, чтобы обеспечивалось управление ею из одной центральной точки. Подобно большой организации, корпоративная сеть нуждается в централизованном хранении как можно более полной справочной информации о самой себе (начиная с данных о пользователях, серверах, рабочих станциях и кончая данными о кабельной системе). Естественно организовать эту информацию в виде базы данных. Данные из этой базы могут быть востребованы многими сетевыми системными приложениями, в первую очередь системами управления и администрирования. Кроме этого, такая база полезна при организации электронной почты, систем коллективной работы, службы безопасности, службы инвентаризации программного и аппаратного обеспечения сети, да и для практически любого крупного бизнес-приложения.

База данных, хранящая справочную информацию, предоставляет все то же многообразие возможностей и порождает все то же множество проблем, что и любая другая крупная база данных. Она позволяет осуществлять различные операции поиска, сортировки, модификации и т.п., что очень сильно облегчает жизнь как администраторам, так и пользователям. Но за эти удобства приходится расплачиваться решением проблем распределенности, репликации и синхронизации.

В идеале сетевая справочная информация должна быть реализована в виде единой базы данных, а не представлять собой набор баз данных, специализирующихся на хранении информации того или иного вида, как это часто бывает в реальных операционных системах. Например, в Windows NT имеется по крайней мере пять различных типов справочных баз данных. Главный справочник домена (NT Domain Directory Service) хранит информацию о пользователях, которая используется при организации их логического входа в сеть. Данные о тех же пользователях могут содержаться и в другом справочнике, используемом электронной почтой Microsoft Mail. Еще три базы данных поддерживают разрешение низкоуровневых адресов: WINS - устанавливает соответствие Netbios-имен IP-адресам, справочник DNS - сервер имен домена - оказывается полезным при подключении NT-сети к Internet, и наконец, справочник протокола DHCP используется для автоматического назначения IP-адресов компьютерам сети. Ближе к идеалу находятся справочные службы, поставляемые фирмой Banyan (продукт Streettalk III) и фирмой Novell (NetWare Directory Services), предлагающие единый справочник для всех сетевых приложений. Наличие единой справочной службы для сетевой операционной системы - один из важнейших признаков ее корпоративности.

Безопасность. Особую важность для ОС корпоративной сети приобретают вопросы безопасности данных. С одной стороны, в крупномасштабной сети объективно существует больше возможностей для несанкционированного доступа - из-за децентрализации данных и большой распределенности "законных" точек доступа, из-за большого числа пользователей, благонадежность которых трудно установить, а также из-за большого числа возможных точек несанкционированного подключения к сети. С другой стороны, корпоративные бизнес-приложения работают с данными, которые имеют жизненно важное значение для успешной работы корпорации в целом. И для защиты таких данных в корпоративных сетях наряду с различными аппаратными средствами используется весь спектр средств защиты, предоставляемый операционной системой: избирательные или мандатные права доступа, сложные процедуры аутентификации пользователей, программная шифрация.

Управление локальными ресурсами

Важнейшей функцией операционной системы является организация рационального использования всех аппаратных и программных ресурсов системы. К основным ресурсам могут быть отнесены: процессоры, память, внешние устройства, данные и программы. Располагающая одними и теми же ресурсами, но управляемая различными ОС, вычислительная система может работать с разной степенью эффективности. Поэтому знание внутренних механизмов операционной системы позволяет косвенно судить о ее эксплуатационных возможностях и характеристиках.

18. защита информации в персональных эвм

С точки зрения общих подходов к защите особенно существенными являются две особенности ПК. Как известно, в АСОД, базирующихся на больших ЭВМ, наряду с зашитой информации непосредственно в ЭВМ такое же решающее (если не большее) значение имеет общая организация защиты: организация и обеспечение технологических процессов циркуляции и обработки потоков информации; охрана территории, зданий и помещений; подбор, обучение и организация работы персонала и т.п. В АСОД с большими ЭВМ основные вопросы защиты, как правило, решают специалисты-профессионалы в области защиты информации. Для персональных же ЭВМ, во-первых, вопросы общей организации защиты могут быть решены физической изоляцией (например, размещением ПК в отдельной комнате, закрываемой на замок), поэтому превалирующую роль играет внутренняя защита, во-вторых, в большинстве случаев заботу о защите информации должны проявлять сами пользователи, которые не только не являются профессионалами в области защиты, но нередко вообще имеют лишь навыки непосредственного решения ограниченного набора задач. Этими особенностями и обусловлена необходимость самостоятельного рассмотрения вопросов защиты информации в персональных ЭВМ с акцентированием внимания именно на внутренней защите.

На формирование множества возможных подходов к защите информации в ПК и выбор наиболее целесообразного из них в конкретных ситуациях определяющее влияние оказывают следующие факторы:

  1. цели защиты;

  2. потенциально возможные способы защиты;

  3. имеющиеся средства защиты.

Основные цели защиты информации:

  1. обеспечение физической целостности;

  2. обеспечение логической целостности;

  3. предупреждение несанкционированного получения;

  4. предупреждение несанкционированной модификации;

  5. предупреждение несанкционированного копирования.

Обеспечение логической целостности информации для ПК малоактуально, другие же цели применительно к ПК могут быть конкретизированы следующим образом. Обеспечение физической целостности. Физическая целостность информации в ПК зависит от целостности самой ПК, целостности дисков и дискет, целостности информации на дисках, дискетах и полях оперативной памяти. В широком спектре угроз целостности, информации в ПК следует обратить особое внимание на угрозы, связанные с недостаточно высокой квалификацией большого числа владельцев ПК. В этом плане особо опасной представляется возможность уничтожения или искажения данных на жестком диске (винчестере), на котором могут накапливаться очень большие объемы данных, самим пользователем.

Предупреждение несанкционированной модификации. Весьма опасной разновидностью несанкционированной модификации информации в ПК является действие вредоносных программ (компьютерных вирусов), которые могут разрушать или уничтожать программы или массивы данных. Данная опасность приобретает актуальность в связи с тем, что среди владельцев ПК общепринятой становится практика обмена дискетами. В получаемой дискете может содержаться весьма неприятный сюрприз.

Предупреждение несанкционированного получения информации, находящейся в ПК. Данная цель защиты приобретает особую актуальность в тех случаях, когда хранимая или обрабатываемая информация содержит тайну того или иного характера (государственную, коммерческую и т. п.). Возможности несанкционированного получения информации в современных ПК очень широки и разнообразны, поэтому данный вид защиты требует серьезного внимания. Предупреждение несанкционированного копирования информации.  Актуальность данной разновидности защиты определяется следующими тремя обстоятельствами:

  1. накопленные массивы информации все больше становятся товаром;

  2. все более широкое распространение получает торговля компьютерными программами;

  3. накопители на гибких МД и оптические дисководы с перезаписью создают весьма благоприятные условия для широкомасштабного копирования информации ПК.

Угрозы информации в персональных ЭВМ

Применительно к защите информации в ПК справедливо практически все сказанное ранее относительно защиты ее в АСОД вообще. Естественно, это относится и к вопросу об угрозах информации. Однако специфические особенности архитектурного построения и способов использования ПК позволяют конкретизировать значительную часть угроз (каналов утечки) информации. Характерные для ПК каналы принято классифицировать по типу средств, которые используются в целях несанкционированного получения по ним информации, причем выделяются три типа средств: человек, аппаратура, программа.

Группу каналов, в которых основным средством несанкционированного получения информации является человек, составляют:

  1. хищение носителей информации (магнитных дисков и дискет, распечаток и т. д.);

  2. чтение или фотографирование информации с экрана;

  3. чтение или фотографирование информации с распечаток. В группе каналов, основным средством использования которых служит аппаратура, выделяют:

  4. подключение к устройствам ПК специальной аппаратуры, с помощью которой можно уничтожать или регистрировать защищаемую информацию;

  5. регистрацию с помощью специальных средств электромагнитных излучений устройств ПК в процессе обработки" защищаемой информации.

Наконец, третью группу каналов (основное средство использования которых — программы) образуют:

  1. программный несанкционированный доступ к информации;

  2. уничтожение (искажение) или регистрация защищаемой информации с помощью программных закладок или ловушек;

  3. чтение остаточной информации из ОЗУ;

  4. программное копирование информации с магнитных носителей.

Как известно, современные ЭВМ могут работать как локально (изолированно), так и в сопряжении с другими ЭВМ, причем как в пределах одной АСОД, так и в сопряженном режиме с другими АСОД. По способу реализации сопряжение может быть организационным (посредством машинных носителей) и техническим (посредством автоматизированного канала связи).

Тогда полный базовый перечень тех участков (мест), в которых могут находиться защищаемые данные, может быть представлен в следующем виде: системные платы ПК; накопители на гибких магнитных дисках (НГМД); ВЗУ типа «Винчестер»; дисплей; печатающее устройство; каналы сопряжения. Защите подлежат данные, находящиеся в каждом из перечисленных мест.

Носители информации могут быть персонального, группового и общего использования.

Для разработки мероприятий защиты информации необходимы следующие исходные характеристики элементов защиты:

  1. возможные объемы находящейся в них информации;

  2. возможная продолжительность пребывания информации;

  3. возможные угрозы информации;

  4. возможные средства защиты.

Как и для объектов защиты, значения этих характеристик для всех элементов защиты целесообразно свести в специальный каталог.

В соответствии с изложенным каждый пользователь ПК может применительно к своим условиям составить перечень потенциально возможных угроз его информации и на этой основе целенаправленно решать вопросы надежной ее защиты.

Обеспечение целостности информации в ПК.

Актуальность данного вида защиты информации в ПК носит общий характер независимо от того, какая информация обрабатывается, поэтому знания и навыки обеспечения целостности необходимы всем пользователям ПК.

Прежде всего, следует знать и помнить, что угрозы целостности информации в ПК, как и в любой другой автоматизированной системе, могут быть случайными и преднамеренными. Основными разновидностями случайных угроз являются отказы, сбои, ошибки, стихийные бедствия и побочные явления, а конкретными источниками их проявления — технические средства, программы и пользователи. С учетом современного состояния технических и программных средств ПК, а также способов и средств их использования к наиболее реальным угрозам целостности информации случайного характера следует отнести ошибки пользователей. Основными из этих ошибок являются неправильные обращения к серийным компонентам программного обеспечения.

Гораздо большую опасность целостности информации в ПК представляют преднамеренные угрозы, создаваемые людьми в злоумышленных целях. Такая угроза может быть непосредственной, если злоумышленник получает доступ к ПК, и опосредованной, когда угроза создается с помощью промежуточного носителя, чаще всего с помощью дискеты. Из преднамеренных угроз наибольшее распространение получили так называемые разрушающие программные средства (РПС): электронные вирусы, черви, троянские кони и др. Они же представляют и наибольшую опасность целостности информации в ПК.

Защита ПК от несанкционированного доступа.

Как показывает практика, несанкционированный доступ (НСД) представляет одну из наиболее серьезных угроз для злоумышленного завладения защищаемой информацией в современных АСОД. Как ни покажется странным, но для ПК опасность данной угрозы по сравнению с большими ЭВМ повышается, чему способствуют следующие объективно существующие обстоятельства:

  1. подавляющая часть ПК располагается непосредственно в рабочих комнатах специалистов, что создает благоприятные условия для доступа к ним посторонних лиц;

  2. многие ПК служат коллективным средством обработки информации, что обезличивает ответственность, в том числе и за защиту информации;

  3. современные ПК оснащены несъемными накопителями на ЖМД очень большой емкости, причем информация на них сохраняется даже в обесточенном состоянии;

  4. накопители на ГМД производятся в таком массовом количестве, что уже используются для распространения информации так же, как и бумажные носители;

  5. первоначально ПК создавались именно как персональное средство автоматизации обработки информации, а потому и не оснащались специально средствами защиты от НСД.

В силу сказанного те пользователи, которые желают сохранить конфиденциальность своей информации, должны особенно позаботиться Об оснащении используемой ПК высокоэффективными средствами защиты от НСД.

Основные механизмы защиты ПК от НСД могут быть представлены следующим перечнем:

  1. физическая защита ПК и носителей информации;

  2. опознавание (аутентификация) пользователей и используемых компонентов обработки информации;

  3. разграничение доступа к элементам защищаемой информации;

  4. криптографическое закрытие защищаемой информации, хранимой на носителях (архивация данных);

  5. криптографическое закрытие защищаемой информации в процессе непосредственной ее обработки;

  6. регистрация всех обращений к защищаемой информации. Ниже излагаются общее содержание .и способы использования перечисленных механизмов.

Физическая защита ПК и носителей информации.

Содержание физической защиты общеизвестно, поэтому детально обсуждать ее здесь нет необходимости. Заметим только, что ПК лучше размещать в надежно запираемом помещении, причем, в рабочее время помещение должно быть закрыто или ПК должен быть под наблюдением законного пользователя. При обработке закрытой информации в помещении могут находиться только лица, допущенные к обрабатываемой информации. В целях повышения надежности физической защиты в нерабочее время ПК следует хранить в опечатанном сейфе.

Опознавание (аутентификация) пользователей и используемых компонентов обработки информации.

В концептуальном плане решение данной задачи принципиально не отличается от аналогичной задачи, решаемой в любой АСОД:

система защиты должна надежно определять законность каждого обращения к ресурсам, а законный пользователь должен иметь возможность, убедиться, что ему предоставляются именно те компоненты (аппаратура, программы, массивы данных), которые ему необходимы.

Для опознавания пользователей к настоящему времени разработаны и нашли практическое применение следующие способы:

  1. с использованием простого пароля;

  2. в диалоговом режиме с использованием нескольких паролей и/или персональной информации пользователей;

  3. по индивидуальным особенностям и физиологическим характеристикам человека (отпечатки пальцев, геометрия руки, голос, персональная роспись, структура сетчатки глаза, фотография и некоторые другие);

  4. с использованием радиокодовых устройств;

  5. с использованием электронных карточек.

Рассмотрим коротко перечисленные способы.

Распознавание по простому паролю заключается в том, что каждому зарегистрированному пользователю выдается персональный пароль, который он должен держать в тайне и вводить в ЗУ ЭВМ, при каждом обращении к ней. Специальная программа сравнивает введенный пароль с эталоном, хранящимся в ЗУ ЭВМ, и при совпадении паролей запрос пользователя принимается к исполнению. Простота способа очевидна, но очевидны и явные недостатки: пароль может быть утерян или подобран перебором возможных комбинаций, а искусный злоумышленник может проникнуть в ту область ЗУ, в которой хранятся эталонные пароли. Попытки преодолеть указанные недостатки, естественно, ведут к усложнению способа.

Опознавание в диалоговом режиме может быть осуществлено по следующей схеме. В файлах механизмов защиты заблаговременно создаются записи, содержащие персонифицирующие данные пользователя (дата рождения, рост, имена и даты рождения родных и близких и т. п.) или достаточно большой и упорядоченный набор паролей. При обращении пользователя программа механизма защиты предлагает пользователю назвать некоторые данные из имеющейся записи, которые сравниваются с данными, хранящимися в файле. По результатам сравнения принимается решение о допуске. Для повышения надежности опознавания каждый раз запрашиваемые у пользователя данные могут выбираться разные. Достоинства и недостатки данного способа очевидны.

Опознавание по индивидуальным особенностям и физиологическим характеристикам может быть весьма надежным, но для его реализации необходима специальная аппаратура для съема и ввода соответствующих параметров и достаточно сложные программы их обработки и сравнения с эталоном. Все это в настоящее время вполне разрешимо, однако сопряжено с удорожанием и усложнением аппаратуры и программ ПК. В силу сказанного данный способ применительно к ПК пока не получил сколько-нибудь значительного распространения. Заманчивым по сравнительной простоте и доступности может оказаться опознавание пользователя по параметрам его работы с клавиатурой ПК (скорость набора текста, интервалы между нажатием клавиш и др.), которые тоже носят сугубо индивидуальный характер. Опознавание по радиокодовым устройствам, как это следует из самого названия, заключается в том, что изготавливаются специальные устройства, каждое из которых может генерировать радиосигналы, имеющие индивидуальные характеристики. ПК оснащается программно-аппаратными средствами приема (например, при приближении устройства к экрану дисплея), регистрации и обработки генерируемых сигналов. Каждому зарегистрированному пользователю выдается такое устройство, а его параметры заносятся в ЗУ механизмов защиты. Надежность опознавания по данному способу может быть высокой, однако такие устройства персонифицируют владельца, а не персону, поэтому похищение устройства дает злоумышленнику реальные шансы несанкционированного доступа.

Опознавание по специальным идентификационным карточкам заключается в том, что изготавливаются специальные карточки, на которые наносятся данные, персонифицирующие пользователя:

персональный идентификационный номер, специальный шифр или код и т. п. Эти данные на карточку заносятся в зашифрованном виде, причем ключ шифрования может быть дополнительным идентифицирующим параметром, поскольку он может быть известен только пользователю, вводится им каждый раз при обращении к системе и уничтожается сразу же после использования. Опознавание по карточкам может быть очень надежным, однако для его реализации необходимы предприятия — изготовители карточек, а ПК должна быть оснащена устройством считывания данных с карточки. Поскольку все это сопряжено со значительными дополнительными расходами, то данный способ опознавания оказывается эффективным при его использовании в больших территориально распределенных сетях, где он в последнее время находит все большее применение, особенно в автоматизированных банковских системах.

Для опознавания компонентов обработки данных, т. е. ЭВМ, ОС, программ функциональной обработки, массивов данных (такое опознавание особенно актуально при работе в сети ЭВМ), используются следующие средства:

  1. специальные аппаратные блоки-приставки (для опознавания ЭВМ, терминалов, внешних устройств);

  2. специальные .программы, реализующие процедуру «запрос-ответ»;

  3. контрольные суммы (для опознавания программ и массивов данных).

Опознавание с помощью блоков-приставок заключается в том, что технические средства оснащаются специальными устройствами, генерирующими индивидуальные сигналы. В целях предупреждения перехвата этих сигналов и последующего их злоумышленного использования они могут передаваться в зашифрованном виде, причем периодически может меняться не только ключ шифрования, но и используемый способ (алгоритм) криптографического преобразования.

Программное опознавание по процедуре «запрос-ответ» заключается в том, что в ЗУ опознающего и опознаваемого объектов заблаговременно вносятся достаточно развитые массивы идентифицируемых данных. Тогда опознающий объект в диалоговом режиме запрашивает те или иные данные из массива опознаваемого объекта и сравнивает их с соответствующими данными своего массива. Опять-таки в целях предупреждения перехвата и злоумышленного использования передаваемых идентифицирующих данных может осуществляться их криптографическое закрытие.

Опознавание по контрольной сумме заключается в том, что для программ и массивов данных заблаговременно вычисляются их контрольные суммы (или другие величины, зависящие от содержания опознаваемых объектов). Дальнейшая процедура опознавания очевидна.

20. Плоттеры

2. ПЕРЬЕВЫЕ ПЛОТТЕРЫ (ПП, PEN PLOTTER).

Перьевые плоттеры - это электромеханические устройства векторного типа, и на ПП традиционно выводят графические изображения различные векторные программные системы типа AutoCAD. ПП создают изображение при помощи пищущих элементов, обобщенно называемых перьями, хотя имеется несколько видов таких элементов, отличающихся друг от друга используемым видом жидкого красителя. Пищущие элементы бывают одноразовые и многоразовые (допускающие перезарядку). Перо крепится в держателе пищущего узла, который имеет одну или две степени свободы перемещения.

Существует два типа ПП: планшетные, в которых бумага неподвижна, а перо перемещается по всей плоскости изображения, и барабанные (или рулонные ), в которых перо перемещается вдоль одной оси координат, а бумага- вдоль другой за счет захвата транспортным валом, обычно врикционным. Пермещения выполняются при помощи шаговых (в подавляющем большинстве плоттеров ) или линейных электродвигателей, создающих довольно большой шум. Хотя точность вывода информации барабанными плоттерами несколко ниже, чем планшетными, она удовлетворяет требованиям большинства задач. Эти плоттеры более компактны и могут отрезать от рулона лист необходимого размера автоматически, что определило их доминирование на рынке больших ПП (ПП формата А3 обычно планшетные).

Отличительной особенностью ПП являются выское качество получаемого изображения и хорошая цветопередача при использоварии цветных пищущих элементов. К сожалению, скорость вывода информации в ПП невысока, несмотряна все более быструю механику и попытки оптимизации процедуры рисования; существует и проблема подбора пары носитель - чернила.

Карандашно-перьевые плоттеры (КПП, pen/pencil) - разновидность перьевых - отличаются возможностью установки специлизированного пишущего узла с цанговым механизмом для использования обчных карандашных грифелей, который обеспечивает постоянное усилие нажима грифеля на бумагу и его автоподачу при стачивании. В результате не требуется постоянно следить за процессом вывода информации, как при эксплуатации ПП, в которых может засоряться канал истечения красителя.

Дополнительные преимущества карандашной технологии:

_ "Краситель" карандашных грифелей не высыхает, и карандаш пишет на любой скорости (при использовании жидких красителей необходимо учитывать время их вытекания из пера и время высыхания)

_ Карандаш позволяет рисовать на любых бумажных носителях, в том числе и не очень высокого качества; при этом изображения качественны, дают хорошие оттиски при копировании, и в то же время их можно корректировать ластиком.

_ Грифели просто купить, значительно экономя на расходных материалах.

ПП и КПП осбенно привлекательны для тех, кому важнее качество, нежели количество изображений, и кто имеет скромный бюджет.

Все остальные типы плоттеров образуют изображения на носителе информации, используя различные физические процессы, в частности прибегагая к дискретному (растровому) способу его создания.

3. СТРУЙНЫЕ ПЛОТТЕРЫ (СП, INK-JET PLOTTER).

Струйная технология создания изображения известна с 70-х годов, но истинный ее прорыв на рынке стал возможен только с разработкой фирмой Canon технологии создания реактивного пузырька (Bubblejet) - направленного распыления чернил на бумагу при помощи сотен мельчайших форсунок одноразовой печатающей головки. Каждой форсунке соответствует свой микорскопический нагревательный элемент (терморезистор), который мгновенно (за 7-10 мкс) нагревается под воздействием электрического импульса. Чернила закипают, и пары создают пузырек, который выталкивает из форсунки каплю чернил. Когда импульс кончается, терморезистор столь же быстро остывает, а пузырек исчезает.

Печатающие головки могут быть "цветными" и иметь соответствующее число групп форсунок. Для создания полноценного изображения используется стандартная для полиграфии цветовая схема CMYK, использующая четыре цвета: Cyan - голубой, Magenta - пурпурный, Yellow - желтый и Black - черный. Сложные цвета образуются смешением основных, причем получение оттенков различных цветов достигается путем сгущения или разрежения точек соответствующего цвета в фрагменте изображения (аналогичный способ используется при получении различных оттенков"серого"при выводе монохромных изображений).

Струйная технология имеет ряд достоинств. Сюда можно отнести простоту реализации, высокое разрешение, низкую потребляемую мощность и относительно высокую скорость печати. Приемлемая цена, высокое качество и большие возможности делают СП серьезным конкурентом перьевых устройств. Спрос на СП со стороны работающих с настольными издательскими системами и пользователей систем автоматизированного проектирования, выпускающих сложные чертежи формата А0, растет, однако невысокая скорость вывода графической информации и выцветание со временем полученного цветного изображения без принятия специальных мер (использования ламинирования или специальной "самоламинирующейся" бумаги) ограничивает их применение.

4. ЭЛЕКТРОСТАТИЧЕСКИЕ ПЛОТТЕРЫ

(ЭП, ELEСTROSTATIC PLOTTER).

Электростатическая технология основывается на создании скрытого электрического изображения (потенциального рельефа) на поверхности носителя - специальной электростатической бумаги, рабочая поверхность которой покрыта тонким слоем диэлектрика, а основа пропитана гидрофильными солями для обеспечения требуемых влажности и электропроводности. Потенциальный рельеф формируется при осаждении на поверхность диэлектрика свободных зарядов, образующихся при возбуждении тончайших электродов записывающей головки высоковольтными импульсами напряжения. Когда бумага проходит через проявляющий узел с жидким намагниченным тонером, частицы тонера оседают на заряженных участках бумаги. Полная цветовая гамма получается за четыре цикла создания скрытого изображения и прохода носителя через четыре проявляющих узла с соответствующими тонерами.

Электростатические плоттеры можно было бы считать идеальными устройствами, если бы не необходимость поддержания стабильных температуры и влажности в помещении, необходимость тщательного обслуживания и их высокая стоимость, в связи с чем ЭП приобретают пользователи, имеющие оправданно высокие требования к производительности и качеству. Для достижения максимальной эффективности ЭП обычно работают как сетевые устройства, для чего снабжены адаптерами сетевого интерфейса. Немаловажны также высокая устойчивость изображения к воздействию ультрафиолетовых лучей и невысокая (на уровне стоимости высококачественной типографской) стоимость электростатической бумаги. ЭП применяют при высокой степени автоматизации проектных работ в солидных организациях и в геоинформационных системах (ГИС).

5. ПЛОТТЕРЫ ПРЯМОГО ВЫВОДА ИЗОБРАЖЕНИЯ

(ППВИ, DIRECT IMAGING PLOTTER).

Изображение в ППВИ создается на специальной термобумаге (бумаге, пропитанной теплочувствительным веществом) длинной (на всю ширину плоттера) "гребенкой" миниатюрных нагревателей. Термобумага, которая обычно подается с рулона, движется вдоль "гребенки" и меняет цвет в местах нагрева. Изображение получается высококачественным (разрешение до 800 dpi (dots per inch - точка/дюйм)), но, увы, только монохромным.

Сейчас цены на термобумагу снизились, недостаки, когда-то прису щие ей (чувствительность к изменениям температуры окружающей среды и низкая контрастность изображения), устранены, а типы термоносителей включают в себя стандартную белую бумагу, кальку и даже полиэфирную пленку. Качество этих носителей удовлетворяет самым строгим архивным требованиям.

Учитывая их высокую надежность, производительность (может достигать 50 листов формата А0 в день) и низкие эксплуатационные затраты, плоттеры ПВИ применяют в крупных проектных организациях для вывода проверочных копий. В связи с этим в их стандартную конфигурацию входит сетевой адаптер. Технические характеристики ППВИ соответсвуют требованиям прикладных задач инженерного проектирования, архитектуры, строительства, городского планирования и электросхемотехники.

6. ПЛОТТЕРЫ НА ОСНОВЕ ТЕРМОПЕРЕДАЧИ

(ПТП, THERMAL TRANSFER PLOTTER).

Отличие этих плоттеров от ППВИ состоит в том, что в них между термонагревателями и бумагой (или прозрачной пленкой!) размещается "донорный цветоноситель" - тонкая, толщиной 5-10 мкм, лента (например, лавсановая), обращенная к бумаге красящим слоем, выполненным на восковой основе с низкой (менее 100ш С) температурой плавления.

На донорной ленте последовательно нанесены области каждого из основных цветов размером, соответствующим листу используемого формата. В процессе вывода информации бумажный лист с наложенной на него донорной лентой проходит под печатающей головкой, которая состоит из тысяч мельчайших нагревательных элементов. Воск в местах нагрева расплавляется, и пигмент остается на листе. За один проход наносится один цвет. се изображение получается за четыре прохода. Таким образом, на каждый лист цветного изображения затрачивается в четыре раза больше красящей ленты, чем на лист монохромного.

Ввиду дороговизны каждого отпечатка эти плоттеры используются в составе средств автоматизированного проектироваия для высококачественного вывода объектов трехмерного моделирования, в системах картографии, где требуется высокое качество воспроизведения цветов, и рекламными агенствами для вывода цветопроб плакатов и транспарантов для красочных презентаций.

7. ЛАЗЕРНЫЕ (СВЕТОДИОДНЫЕ) ПЛОТТЕРЫ

(ЛП, LASER/LED PLOTTER).

Эти плоттеры базируются на электрографической технологии, в основу которой положены физические процессы внутреннего фотоэффекта в светочувствительных полупроводниковых слоях селеносодержащих материалов и силовое воздействие электростатического поля. Промежуточный носитель изображения (вращающийся селеновый барабан) в темноте может быть заряжен до потенциала в сотни вольт. Луч света снимает этот заряд, создавая скрытое электростатическое изображение, которое притягивает намагниченный мелкодисперсный тонер, переносимый затем механическим путем на бумагу. После этого бумага с нанесенным тонером проходит через нагреватель, в результате чего частицы тонера запекаются, создавая изображение.

Некоторое время назад создание скрытого изображения на барабане осуществлялось исключительно при помощи лазера. Для управления перемещением лазерного луча служила сложная система вращающихся зеркальных многогранников или призм или линз. Вследствие этого плоттеры, использующие лазеры, боятся тряски и ударов, которые могут сбить настройку. Избежать сложностей с оптикой и сделать систему проще, легче и надежнее позволило применение линеек точечных полупроводниковых светодиодов (light-emitting diode - LED).

Лазерные и LED-плоттеры ввиду высокого быстродействия (лист формата А1 выводится менее чем за полминуты) удобно использовать как сетевые устройства, и они имеют в стандартной комплектации адаптор сетевого интерфейса. Не менее важно и то, что эти плоттеры могут работать на обычной бумаги, что сокращает эксплуатационные затраты.

LED-плоттеры становятся все более популярными, хотя по стоимости сравнимы с монохромными электростатическими.

Область их применения: сложный технический дизайн, архитектура, картография и другое, т.е. везде, где требования к производительности и качеству результатов высоки, но наличие цвета не требуется.

19. Устройства вывода информации на печать, принтеры.

1.1. Принтер: понятие, история создания

Принтер (от англ. printer - печатник) - устройство для преобразования информации, хранящейся на запоминающих устройствах (текст, графика) в твёрдую копию, обычно на бумаге. Процесс этот называется вывод на печать, а получившийся документ - распечатка.

О необходимости вывода на бумагу результатов вычислений задумывался еще Чарльз Беббидж, когда разрабатывал свою Аналитическую машину – механический прообраз современных компьютеров. В результате он придумал еще и первый в истории человечества принтер, получивший название Difference Engine (Разностная машина).

К сожалению, это устройство так и не было создано при жизни автора. Правда через 150 лет после смерти автора, этот принтер все же был собран лондонским Музеем Науки, под руководством его директора Дорона Суода. Получившееся устройство состояло из 8000 деталей, и весило около 5 тонн. Следует заметить, что при разработке данного Difference Engine, Беббидж придумал множество идей, применяемых и по сегодняшний день.

При появлении ЭВМ, первое время информацию либо записывали вручную, либо распечатывали на печатной машинке (для этого даже нанимался специальный персонал). Первое же печатное устройство, которое можно было подключить к ЭВМ создала в1953 году компания Remington-Rand. Устройство, по принципу работы очень напоминающее печатную машинку, получило название UNIPRINTER. Основной частью принтера был диск со множеством «лепестков», каждый из которых представлял из себя литеру (рельефное изображение букв, цифр и специальных символов). Специальный ударный механизм бил по лепестку, который, через печатную ленту, ударял по бумаге. Тогда же и родилась идея цветной печати – для нее использовали печатную ленту различных цветов. Скорость печати UNIPRINTER составляла около 80 000 знаков в минуту! В дальнейшем, принтеры такого типа получили название «лепестковые принтеры». Были также попытки заменить лепестки специальными барабанами и лентами. Пришла эта технология и в СССР, где такие машины называли алфавитно-цифровыми печатающими устройствами - АЦПУ. Эти принтеры обладали рядом существенных недостатков – они были ненадежны, очень шумные, не позволяли печатать графику и всегда печатали одним и тем же шрифтом.

Технологию матричной печати разработала в 1964 году компания Seyko Epson. Но первый матричный принтер появился в 1970 году. Его разработала компания Centronics Data Computer. Для печати в нем использовалась матрица из 7 иголок (отсюда и название типа принтеров). Принтер назывался Model 101. Благодаря матричным принтерам, стало возможным печатать так же и графику. Технология стремительно развивалась и удешевлялась. Так, уже в 1983 году, в продаже появился первый принтер, который вполне мог быть приобретен домашним пользователем - его стоимость составляла порядка 700 долларов (к примеру, стоимость Model 101 была около 3000 долларов). Этим принтером стал Image Writer – детище компании C.ltoh Electronics. Приход матричных принтеров в дом, дал дополнительный толчек к развитию технологии. Но и матричные принтеры обладают рядом недостатков, главными из которых являются низкое качество печати, и шумность. Однако, благодаря своей исключительно низкой себестоимости, и очень высокой надежности, матричные принтеры дожили до наших дней.

Недостатки матричных принтеров, заставляли исследователей искать новые способы печати. Первые струйные принтеры появились не намного позже матричных – в 1976 году, корпорация IBM представила первую действующую модель, получившую название Model 6640. Однако прошло еще не мало лет, прежде чем струйные принтеры появились на столах домашних пользователей. Основную роль с развитии струйных принтеров сыграли компании Canon, Epson и Hewlett-Packard, разработавшие собственные технологии печати (BubbleJet, пьезоэлектрический метод и drop-on-demand, соответственно).

Первый цветной струйный принтер разработала компания Hewlett-Packard, представившая в начале 90-х годов принтер, способный смешивать краски друг с другом, получая тем самым различные цвета и оттенки.

Что же касается лазерных принтеров, то тут следует отметить, что технология используемая в лазерной печати (электрография) появилась еще задолго до появления первых матричных принтеров – в далеком 1938 году. Ее разработал американский ученый Честер Карлсон. С тех пор она неоднократно улучшалась и дорабатывалась. Однако использовать ее для создания принтера догадалась лишь компания Xerox, решившая использовать технологию копировального аппарата для создания принтера. В результате, в 1971 году, появился аппарат EARS, так и не покинувший стен лаборатории. Первая же коммерческая модель лазерного принтера появилась в 1977 году. Она называлась Xerox 9700 Electronic. К разработкам лазерных принтеров подлючаются компании IBM, Apple и Hewlett-Packard. Однако долгое время, эти устройства били слишком дорогими – их цена составляла порядка нескольких тысяч долларов. Первый же принтер, стоящий меньше 1000 долларов создала компания Hewlett-Packard, создавшая в начале 90-х годов модель LaserJet IIP. Современный лазерный принтер используемый дома – это относительно недорогое (все же на порядок дороже струйного принтера) устройство, с очень низкой себестоимостью печати.

Существуют еще несколько типов печати - сублимационная, термическая... Но они либо вообще не употребляются в домашних условиях, либо употребляются исключительно редко.

На сегодняшний день три технологии (матричная, струйная и лазерная) – наиболее применяемые и распространенные. Постоянно совершенствуясь и развиваясь, по сути своей они оставались неизменными с момента создания. Но кто знает, может быть уже в самое ближайшее время, появится технология, которая совершит настоящую революцию в мире принтеров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]