
- •Завдання вищої геодезії. Основні поняття
- •Геометрія земного еліпсоїда
- •Розв’язування геодезичних задач
- •Опорні геодезичні мережі
- •Оцінка точності побудови опорних
- •Високоточні теодоліти і їх дослідження
- •Високоточні вимірювання горизонтальних кутів
- •Вимірювання базисів
- •Врівноваження тріангуляції, трилатерації та лінійно-кутової тріангуляції
- •Метод точної полігонометрії. Комбіновані геодезичні мережі
- •Високоточне геометричне нівелювання
- •Тригонометричне нівелювання
- •І. Завдання вищої геодезії. Основні поняття та визначення
- •1.1. Предмет і завдання вищої геодезії
- •1.2. Поняття про загальний еліпсоїд, референц-еліпсоїд, геоїд і квазігеоїд
- •1.3. Геодезичні і астрономічні координати. Відхилення виска. Вихідні геодезичні дати
- •1.4. Поняття про методи визначення фігури Землі
- •Астрономо-геодезичний метод
- •1.4.2. Гравіметричний метод
- •1.4.2.Супутниковий метод
- •2. Геометрія земного еліпсоїда
- •2.1. Параметри земного еліпсоїда, зв’язки між ними
- •2. 2. Рівняння поверхні еліпсоїда
- •Поверхню можна ще визначити з допомогою трьох рівнянь:
- •2.3. Криві на поверхні еліпсоїда
- •2.3.1. Нормальні перерізи
- •2.3.2. Геодезична лінія
- •3. Розв'язування геодезичних задач
- •3.1. Види геодезичних задач
- •3.2. Короткі історичні відомості
- •3.3.Точність розв'язування головної геодезичної задачі на поверхні еліпсоїда
- •3.4. Основні шляхи розв'язування геодезичних задач
- •3.4.1. Розв'язування сфероїдних трикутників
- •Сферичний надлишок
- •Способи розв'язування малих сфероїдних трикутників а )за формулами сферичної тригонометрії
- •Б) за теоремою Лежандра
- •В) за способом аддитаментів
- •Г) за виміряними сторонами
- •4. Опорні геодезичні мережі
- •4.1. Методи створення геодезичних мереж
- •4.1.1. Метод тріангуляції
- •4.1.2. Метод полігонометрії
- •4.1.3. Методи трилатерації та лінійно-кутової тріангуляції
- •4.2. Класифікація геодезичних мереж, їх призначення і точність
- •4.3. Основні геодезичні роботи в Росії
- •4.4. Схема та програма побудови геодезичної мережі колишнього срср
- •4.5. Загальні відомості про побудову геодезичної мережі в Німеччині, сша, Японії
- •4.6. Проектування геодезичних мереж 2-го класу
- •4.6.1. Аналітичний метод визначення висот геодезичних знаків
- •4.6.2. Проектування мереж згущення
- •1:25000, 1:10 000 1 Пункт на 50-60 км2
- •1:5 000 1 Пункт на 20-30 км2
- •4.6.3. Рекогносцировка
- •4.7. Геодезичні центри і знаки
- •4.8. Відомості про організацію основних геодезичних робіт
- •Оцінка точності побудови опорних геодезичних мереж
- •5.1. Загальні відомості про оцінку точності опорних геодезичних мереж
- •5 2. Середні квадратичні похибки передачі дирекційних кутів і довжин сторін у ряді тріангуляції
- •У цьому окремому випадку маємо одне умовне рівняння фігури
- •Найвигідніша форма трикутника в тріангуляції
- •Поздовжнє і поперечне зміщення ряду тріангуляції
- •Азимути Лапласа
- •Суцільні мережі тріангуляції
- •Оцінка точності мереж трилатерації
- •5.8. Оцінка точності мереж лінійно-кутової тріангуляції
- •6. Високоточні теодоліти та їx дослідження
- •6.1. Характерні особливості високоточних теодолітів
- •6.2. Характеристика деяких сучасних теодолітів
- •6.3. Осьові системи і точні рівні
- •6.4.Зорові труби. Окулярні мікрометри
- •6.5. Лімби теодолітів. Відлікові устаткування
- •6.6. Колімаційна похибка труби. Нахил горизонтальної та вертикальної осей теодоліта
- •6.7. Похибки поділок кругів теодоліта
- •7. Високоточні вимірювання горизонтальних кутів
- •7.1. Джерела похибок при вимірюванні кутів
- •7.2. Візирні цілі, фази. Світлова сигналізація. Кручення сигналів
- •7.3. Найвигідніший час для вимірювання горизонтальних кутів
- •7.4. Основні принципи високоточних вимірювань кутів
- •7.5. Методи високоточних кутових вимірювань та їх обробка
- •Розв'язуючи ці рівняння за методом найменших квадратів, утворимо функцію
- •7.6. Приведення виміряних напрямків до центрів геодезичних знаків
- •8. Вимірювання базисів
- •8.1. Нормальні міри, їх типи і вимоги до них
- •8.2. Базисний прилад бп-1
- •8.3. Поправки, які вводяться у довжину хорди. Виведення формул
- •8.4. Методика вимірювань з бп-1. Обробка даних
- •8.5. Вимірювання базисних сторін світловіддалемірами
- •9. Врівноваження тріангуляції, трилатерації та лінійно кутової тріангуляції
- •9.1. Загальні положення про обробку тріангуляції
- •9.2. Корелатний метод
- •9.3.Параметричний метод
- •10. Метод точної полігонометрії. Комбіновані геодезичні мережі
- •10.1. Основні принципи полігонометрії та її класифікація
- •10.2. Прилади для вимірювання кутів і ліній. Методика вимірювання.
- •10.3. Поздовжнє й поперечне зміщення в ходах полігонометрії
- •10.4.Оцінка точності кутових і лінійних вимірювань
- •11. Вискоточне геометричне нівелювання
- •11.1. Завдання високоточного нівелювання. Нівелірна мережа. Схема побудови і програма.
- •11.2. Початок відліку висот. Закріплення пунктів нівелірної мережі на місцевості
- •11.3. Високоточні нівеліри й рейки, їх дослідження
- •11.4. Методи високоточного нівелювання
- •11.5. Методика нівелювання і й іі класів
- •11.6. Врівноваження нівелірних мереж
- •11.7. Короткий історичний нарис
- •Тригонометричне нівелювання
- •Суть, призначення і виконання тригонометричного нівелювання
- •Література
- •Печенюк Олег Олександрович
3.2. Короткі історичні відомості
Виникнення головної геодезичної задачі у вищенаведеній постановці належить віднести до першої половини XVII століття, коли Снелліус розробив і запропонував метод тріангуляції, коли в результаті теоретичних вишукувань та практичних робіт багатьох учених було правильно встановлено вид і розміри Землі і, коли, нарешті, були в достатній мірі розроблені математичні методи розв’язуван- ня цієї задачі. Природно, що успіхи в розв'язуванні головної геодезичної задачі обумовлювались широким розмахом геодезичних робіт, як у плані виробництва, так і в плані наукових досліджень.
Першість у науково обґрунтованій постановці і розв’язу-ванні головної геодезичної задачі належить французам. Франція відігравала керівну роль у цьому питанні протягом усього XVIII ст. Однією з перших обставин, що змусила вчених зайнятися розв'язком цієї задачі, були роботи Ж.Кассіні (1734) зі складання топографічної карти Франції. А перший крок до розв'язування головної геодезичної задачі з урахуванням сфероїдного виду Землі був зроблений А.Клеро (1735), котрий встановив положення, справедливе для всіх поверхонь обертання: для кожної точки найкоротшої лінії на подібній поверхні добуток відстані від осі обертання на синус азимута сталий. Це положення Клеро, яке носить тепер назву теореми Клеро, створило основу сфероїдної тригонометрії. Л.Ейлер (1753), як засновник сфероїдної тригонометрії, вказав на застосування останньої для трикутників на будь-яких поверхнях, якщо сторони трикутників є найкоротшими лініями. При розв'язуванні головної геодезичної задачі має застосування теорема А.Лежандра (1787), котра значно спрощує розв'язування трикутників тріангуляції. Лежандр дав три розв'язки (різної точності) головної геодезичної задачі. Третій розв'язок, в якому використовується геодезична лінія, можна вважати першим прямим розв'язком головної геодезичної задачі.
З двадцятих років XIX ст. першість у даному питанні переходить до німецьких учених, чий внесок у багатьох теоретичних і прикладних питаннях геодезії загалом визначив провідну роль протягом XIX ст.
Розв'язування головної геодезичної задачі із застосуванням достатньо зручних формул і з забезпеченням необхідної на той час точності дав у своїх роботах Зольднер (1810). Замість прямого шляху розв'язування К.Гаусс уперше, застосувавши ряд Тейлора, дав непрямий (побічний) шлях, у якому обчислювались не безпосередньо шукані координати й азимути, а лише поправки до вихідних даних. Він же, на основі своєї теорії конформного зображення одної поверхні на другій, дає виведення формул розв'язування головної геодезичної задачі. Оригінальний підхід до розв'язування цієї задачі, що в подальшому дістав назву "спосіб допоміжної точки", запропонував О.Шрейбер (1878). Відомі також формули розв'язування головної геодезичної задачі Ф.Гельмерта (1875), В.Йордана (1883), Л.Крюгера (1919).
Остання чверть XIX ст. і початок XX ст. пов'язана зі швидким розвитком геодезичних робіт на американському континенті, і ця обставина, знову таки, відбилась і на питанні розв'язування головної геодезичної задачі (А.Кларк, Л.Пюіссан, Р.Тобі, А.Роббінс).
Подальші дослідження цього питання не внесли суттєвих змін. На перший план вийшли числові методи розв'язування головної геодезичної задачі за допомогою ЕОМ. Особливістю цих методів є простота програмування, висока точність розв'язування, універсальність і однотипність обчислю- вальної процедури при будь-яких відстанях (Ф.Харамза (1961), Н.Беспалов (1980)).
Методи розв'язування головної геодезичної задачі між точками в просторі були досліджені в працях М.Молоденського (1954), М.Хотіна (1957), Н.Дюфура (1959), В.Єремеєва і М. Юркіної (1966).
Треба відзначити і внесок українських учених у проблему розв'язування геодезичних задач: розв'язок на великі відстані (М.Русин), розв'язок у системі просторових координат (А.Філіпов, В.Рудський) тощо.