
- •Раздаточный материал
- •Раздел 1 измерение основных технологических параметров
- •Тема 1. Основные сведения об измерениях и средствах измерения
- •Слайд 2. Основные понятия метрологии
- •Слайд 3. Классификация измерений
- •Слайд 4. Классификация методов измерения
- •Слайд 6. Классификация средств измерений
- •Слайд 8. Метрологические характеристики (мх) средств измерений
- •Слайд 9. Параметры шкал измерительных приборов
- •Слайд 10. Погрешность измерения
- •Слайды 11 - 14. Погрешности средств измерения
- •Тема 2. Измерение температуры Слайд 15. Температурные шкалы
- •Слайд 16. Биметаллические термометры расширения
- •Слайд 17. Манометрические термометры
- •Слайд 19. Термометры сопротивления
- •Слайд 20. Мостовая измерительная схема для термометров сопротивления
- •Слайд 21. Термоэлектрические преобразователи (термопары)
- •Слайд 22. Компенсационная измерительная схема для термопар
- •Слайд 23. Преобразователь термо-э.Д.С. В унифицированный токовый сигнал
- •Слайд 24. Преобразователь сопротивления терморезистора в унифицированный токовый сигнал
- •Тема 3. Измерение давления Слайд 28. Деформационные манометры
- •Слайд 29. Сильфон
- •Слайд 30. Мембрана
- •Слайд 31. Пьезоэлектрические преобразователи давления
- •Слайды 32 - 33. Тензопреобразователи
- •Слайд 34. Емкостные преобразователи
- •Слайд 35. Резонансные преобразователи
- •Слайды 36 – 38. Интеллектуальные датчики давления
- •Слайды 41-43. Доцент кафедры аттп00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000Интеллектуальные датчики давления Sitrans p Siemens
- •Тема 4. Измерение расхода Слайд 47. Турбинные (скоростные) расходомеры и счетчики
- •Слайд 48. Расходомеры переменного перепада давления (дроссельные)
- •Слайд 49. Расходомеры постоянного перепада давления (ротаметры)
- •Слайд 50. Тепловые (калориметрические) расходомеры
- •Слайд 51. Ультразвуковые расходомеры
- •Слайд 52. Кориолисовые расходомеры
- •Слайды 53 - 54. Кориолисов расходомер Micro Motion elite cmf 300
- •Слайд 55. Вихревые расходомеры
- •Тема 5. Измерение уровня Слайд 57. Визуальные и байпасные указатели уровня
- •Поплавковый байпасный уровнемер с магнитным указателем bna
- •Слайд 58. Механические и магнитные поплавковые уровнемеры
- •Слайд 59, 60. Магнитострикционные поплавковые уровнемеры
- •Слайд 61. Буйковые и гидростатические уровнемеры
- •Слайд 62. Емкостные уровнемеры
- •Таким образом, полная емкость чувствительного элемента будет равна
- •Слайд 63. Акустические (ультразвуковые) уровнемеры
- •Слайд 64. Радарные уровнемеры
- •Слайд 65. Радарные волноводные уровнемеры
- •Тема 6. Измерение влажности и вязкости Слайд 66. Измерение влажности
- •Слайд 67. Кулонометрические гигрометры
- •Слайд 68. Диэлькометрический гигрометр
- •Слайд 69. Измерение вязкости
- •Слайд 70. Капиллярные вискозиметры
- •Тема 7. Контроль состава газовых смесей Слайд 71. Контроль состава газа
- •Слайды 72-73. Термокондуктометрические газоанализаторы
- •Слайд 74. Термохимические газоанализаторы
- •Слайды 75-76. Оптические газоанализаторы
- •Слайды 77 - 79. Инфракрасный газоанализатор углеводородных газов pirecl
- •Тема 8. Измерение вибрации Слайд 80. Основные параметры вибрации
- •Слайды 81-82. Вихретоковые датчики вибросмещения
- •Слайд 83. Оптический (лазерный) преобразователь виброскорости
- •Слайд 84. Пьезоэлектрические датчики виброускорения
- •Слайды 85 – 88. Системы контроля вибрации
- •Слайд 89. Измерение частоты вращения
- •Слайд 90. Магнитоиндукционный преобразователь скорости вращения
- •Слайд 91. Преобразователь скорости вращения с индуктивным преобразователем и зубчатым диском
Слайды 85 – 88. Системы контроля вибрации
Общая структура систем измерения и анализа вибрации, независимо от конкретного назначения, включает в себя измерительные преобразователи, согласующие устройства, линии связи, собственно средства анализа, базы данных и средства (программы) обработки информации. Из измерительных вибропреобразователей чаще других применяются рассмотренные выше пьезоэлектрические преобразователи виброускорения (акселерометры), оптические (лазерные) преобразователи виброскорости и вихретоковые преобразователи относительного виброперемещения (проксиметры).
Существующие технические средства контроля вибрации можно классифицировать следующим образом: 1) средства допускового контроля и аварийной защиты; 2) индикаторы состояния объектов контроля; 3) средства вибрационного мониторинга; 4) средства вибрационной диагностики; 5) исследовательские приборы и системы.
Простейшими по своим функциям являются системы допускового контроля и аварийной защиты. Их обязательной функцией является измерение величины виброскорости или вибросмещения в стандартной полосе частот, например от 2 (или от 10) до 1000 Гц. Для этого в составе системы используется широкополосный фильтр со стандартной амплитудно-частотной характеристикой. Широкая полоса частот фильтра позволяет обеспечить быструю реакцию выходного сигнала на скачок вибрации контролируемого оборудования, удовлетворив тем самым требования к системам аварийной защиты по скорости их срабатывания.
Задачей приборов, выполняющих функции индикаторов состояния, является раннее обнаружение признаков одного (или группы) возможных дефектов контролируемого оборудования. Из всего множества дефектов выбираются такие, которые, с одной стороны, просто и эффективно обнаруживаются по сигналу вибрации, а с другой стороны, присутствуют в любой из цепочек дефектов, быстро развивающихся в предаварийном состоянии контролируемого оборудования. Примером приборов такого типа являются индикаторы состояния подшипников качения по вибрации в ультразвуковом диапазоне частот неподвижных элементов этих подшипников, возбуждаемых ударными импульсами при контакте тел качения с неподвижным кольцом подшипника. Индикаторы состояния подшипников обычно измеряют ультразвуковую вибрацию в достаточно широкой полосе частот. Центральная частота этой полосы в разных приборах может быть разной, начиная от 20 – 30 кГц и заканчивая значениями выше 100 кГц. Контролируется обычно среднеквадратичное значение ультразвуковой вибрации (мощность ударных импульсов) и форма одиночных ударных импульсов. Большинство систем этой группы являются переносными.
Более сложные функции имеют системы вибрационного мониторинга. Их основным назначением является обнаружение необратимых изменений вибрации оборудования и прогнозирование скорости их развития. Дополнительная задача, которая может решаться системами мониторинга, - это определение причин обнаруженных изменений. Эта задача решается экспертом, анализирующим результаты мониторинга, в том числе с применением специальных экспертных программ. Системы вибрационного мониторинга бывают двух типов: защитного или прогнозирующего мониторинга. Чаще других используются системы защитного мониторинга, анализирующие информацию о многих структурных и рабочих параметрах объекта мониторинга. В таких системах обычно проводится лишь простейший анализ вибрации с помощью стандартных контроллеров. Лишь в некоторых случаях, кроме величины вибрации в стандартной полосе частот, выполняется спектральный анализ вибрации в полосе частот до 1-2 кГц. Структура выходных данных вибрационных каналов в системах защитного мониторинга, как правило, определяется стандартами на системы автоматического контроля и управления.
Системы прогнозирующего вибрационного мониторинга вращающегося оборудования основаны на спектральном анализе. Верхняя частота спектрального анализа составляет примерно 20 кГц и выше, в зависимости от конструктивных особенностей и частоты вращения объекта мониторинга. С учетом этого выбираются типы измерительных преобразователей вибрации. Спектральный анализ вибрации вращающегося оборудования позволяет выявить более половины из возможных развитых дефектов и на этой основе не пропустить ни одной цепочки дефектов, быстро развивающихся непосредственно перед аварией контролируемого оборудования. Именно поэтому системы вибрационного мониторинга являются эффективным средством предупреждения аварий, а использование в их составе экспертной диагностической программы позволяет выявить причины необходимой остановки оборудования и быстро их устранить.
Поскольку далеко не все дефекты оборудования могут быть обнаружены задолго до отказа, давать реальный прогноз его безаварийной работы на длительное время с помощью переносных систем мониторинга сложно. Поэтому абсолютное большинство эффективных систем вибрационного мониторинга устанавливается на оборудовании штатно и проводит измерения вибрации через короткие интервалы времени.