
- •Раздаточный материал
- •Раздел 1 измерение основных технологических параметров
- •Тема 1. Основные сведения об измерениях и средствах измерения
- •Слайд 2. Основные понятия метрологии
- •Слайд 3. Классификация измерений
- •Слайд 4. Классификация методов измерения
- •Слайд 6. Классификация средств измерений
- •Слайд 8. Метрологические характеристики (мх) средств измерений
- •Слайд 9. Параметры шкал измерительных приборов
- •Слайд 10. Погрешность измерения
- •Слайды 11 - 14. Погрешности средств измерения
- •Тема 2. Измерение температуры Слайд 15. Температурные шкалы
- •Слайд 16. Биметаллические термометры расширения
- •Слайд 17. Манометрические термометры
- •Слайд 19. Термометры сопротивления
- •Слайд 20. Мостовая измерительная схема для термометров сопротивления
- •Слайд 21. Термоэлектрические преобразователи (термопары)
- •Слайд 22. Компенсационная измерительная схема для термопар
- •Слайд 23. Преобразователь термо-э.Д.С. В унифицированный токовый сигнал
- •Слайд 24. Преобразователь сопротивления терморезистора в унифицированный токовый сигнал
- •Тема 3. Измерение давления Слайд 28. Деформационные манометры
- •Слайд 29. Сильфон
- •Слайд 30. Мембрана
- •Слайд 31. Пьезоэлектрические преобразователи давления
- •Слайды 32 - 33. Тензопреобразователи
- •Слайд 34. Емкостные преобразователи
- •Слайд 35. Резонансные преобразователи
- •Слайды 36 – 38. Интеллектуальные датчики давления
- •Слайды 41-43. Доцент кафедры аттп00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000Интеллектуальные датчики давления Sitrans p Siemens
- •Тема 4. Измерение расхода Слайд 47. Турбинные (скоростные) расходомеры и счетчики
- •Слайд 48. Расходомеры переменного перепада давления (дроссельные)
- •Слайд 49. Расходомеры постоянного перепада давления (ротаметры)
- •Слайд 50. Тепловые (калориметрические) расходомеры
- •Слайд 51. Ультразвуковые расходомеры
- •Слайд 52. Кориолисовые расходомеры
- •Слайды 53 - 54. Кориолисов расходомер Micro Motion elite cmf 300
- •Слайд 55. Вихревые расходомеры
- •Тема 5. Измерение уровня Слайд 57. Визуальные и байпасные указатели уровня
- •Поплавковый байпасный уровнемер с магнитным указателем bna
- •Слайд 58. Механические и магнитные поплавковые уровнемеры
- •Слайд 59, 60. Магнитострикционные поплавковые уровнемеры
- •Слайд 61. Буйковые и гидростатические уровнемеры
- •Слайд 62. Емкостные уровнемеры
- •Таким образом, полная емкость чувствительного элемента будет равна
- •Слайд 63. Акустические (ультразвуковые) уровнемеры
- •Слайд 64. Радарные уровнемеры
- •Слайд 65. Радарные волноводные уровнемеры
- •Тема 6. Измерение влажности и вязкости Слайд 66. Измерение влажности
- •Слайд 67. Кулонометрические гигрометры
- •Слайд 68. Диэлькометрический гигрометр
- •Слайд 69. Измерение вязкости
- •Слайд 70. Капиллярные вискозиметры
- •Тема 7. Контроль состава газовых смесей Слайд 71. Контроль состава газа
- •Слайды 72-73. Термокондуктометрические газоанализаторы
- •Слайд 74. Термохимические газоанализаторы
- •Слайды 75-76. Оптические газоанализаторы
- •Слайды 77 - 79. Инфракрасный газоанализатор углеводородных газов pirecl
- •Тема 8. Измерение вибрации Слайд 80. Основные параметры вибрации
- •Слайды 81-82. Вихретоковые датчики вибросмещения
- •Слайд 83. Оптический (лазерный) преобразователь виброскорости
- •Слайд 84. Пьезоэлектрические датчики виброускорения
- •Слайды 85 – 88. Системы контроля вибрации
- •Слайд 89. Измерение частоты вращения
- •Слайд 90. Магнитоиндукционный преобразователь скорости вращения
- •Слайд 91. Преобразователь скорости вращения с индуктивным преобразователем и зубчатым диском
Слайды 32 - 33. Тензопреобразователи
Принцип действия тензорезисторов основан на явлении тензоэффекта - изменении активного электрического сопротивления проводниковых и полупроводниковых материалов при деформации под воздействием механических усилий. Связь между изменением сопротивления тензорезистора и его деформацией устанавливается соотношением
,
где R/R – относительное изменение сопротивления тензорезистора;
l/l – относительное изменение его длины;
SТ –коэффициент тензочувствительности, определяемый материалом ТР. Тензочувствительность считается положительной, если ΔR/R>0, и отрицательной, если ΔR/R<0.
Полупроводниковые тензорезисторы имеют ряд преимуществ перед проводниковыми, прежде всего гораздо большую чувствительность (в 50…60 раз). Монокристаллическая структура, в которой кремниевые тензорезисторы «выращиваются» непосредственно на сапфировой мембране, получила название КНС – «кремний на сапфире». Сапфировая мембрана обладает упругими свойствами, приближающимися к идеальным. Сцепление кремниевых тензорезисторов с мембраной за счет молекулярных сил позволяет отказаться от использования клеящих материалов и улучшить метрологические характеристики преобразователей. Планарная технология позволяет одновременно формировать в полупроводнике тензорезисторы, элементы термокомпенсации и микроэлектронный блок обработки сигнала. Тензорезиcторы мостовой схемы можно располагать на мембране так, что при деформации они будут иметь разные по знаку приращения сопротивления, что повышает чувствительность тензодатчика в целом.
На сегодняшний день тензорезисторные измерительные преобразователи давления (в переводной литературе их иногда называют пьезорезисторными, не надо путать с пьезоэлектрическими) являются самыми популярными в мире. Они представляют собой металлическую и/или диэлектрическую измерительную мембрану, на которой размещаются тензорезисторы. Деформация мембраны под воздействием внешнего давления приводит к локальным деформациям тензорезисторов, включенным обычно в плечи четырехплечего уравновешенного моста. При этом одна пара тензорезисторов, включенных в противоположные плечи моста, имеет положительную тензочувствительность, а другая – отрицательную. Их сопротивления при подаче давления соответственно увеличиваются и уменьшаются на величину ΔR. При отсутствии давления все четыре сопротивления равны по величине и мост сбалансирован. При подаче давления баланс (равновесие) моста нарушается, и в измерительной диагонали моста будет протекать ток. Этот токовый сигнал и является мерой измеряемого давления.
Интегральные полупроводниковые тензорезисторные чувствительные элементы реализуются двумя способами. По гетероэпитаксиальной технологии «кремний на сапфире» (КНС) тонкая пленка кремния выращивается на подложке из сапфира, припаянной твердым припоем к титановой мембране. В структуре КНК мембрана из монокристаллического кремния размещается на диэлектрическом основании с использованием легкоплавкого стекла или методом анодного сращивания и по технологии диффузионных резисторов выращиваются кремниевые же резисторы с изоляцией их от проводящей кремниевой подложки p-n переходами – технология «кремний на кремнии» (КНК)..
Особенно широкое применение в изготовлении общепромышленных измерительных преобразователей давления в настоящее время получила технология КНС. К ее преимуществам можно отнести хорошую защищенность чувствительного элемента от воздействия любой агрессивной среды, налаженное серийное производство, низкую стоимость. Однако структура КНС имеет и недостатки – временнýю нестабильность градуировочной характеристики и существенную погрешность гистерезиса от давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с конструктивными элементами датчика. Измерительные преобразователи давления, выполненные на основе структуры КНК, имеют бóльшую временную и температурную стабильности по сравнению с преобразователями на основе КНС - структур.
Наибольшую погрешность в результат измерения давления с помощью тензорезисторных измерительных преобразователей вносит изменение температуры. Для ее уменьшения в связи с широким использованием в последнее время интеллектуальных преобразователей, как правило, используется автоматическое введение поправок на температуру. При этом первичный преобразователь (тензорезисторный чувствительный элемент) подвергается предварительной градуировке при различных значениях температуры. Эти градуировочные данные вводятся в память микропроцессора интеллектуального преобразователя. При эксплуатации преобразователя измеряется температура и выходной ток датчика, и путем аппроксимации градуировочных данных вычисляется измеряемое давление.