Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИНЖЕНЕРНАЯ ГРАФИКА-ЭКЗАМЕН.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
666.62 Кб
Скачать

11. Построение прямой, параллельной плоскости; прямой, перпендикулярной плоскости. Построение взаимно параллельных плоскостей.

Для того чтобы провести через точку А прямую параллельную плоскости α необходимо: 1) в плоскости α выбрать или построить произвольную прямую; 2) через точку А провести новую прямую параллельную выбранной прямой.

Для того чтобы проверить, параллельна ли прямая плоскости необходимо попытаться в заданной плоскости построить прямую параллельную заданной. Если это удастся, то прямая и плоскость параллельны.

Алгоритм построения перпендикуляра к плоскости

Вербальная форма

Графическая форма

1. Для того чтобы построить перпендикуляр к плоскости Р(DАВС) через точку D, необходимо сначала построить любую горизонталь в данной плоскости Р(D АВС) – h (h1h2)

2. Строим фронталь в плоскости Р(D АВС) – f ( f1f2)

3. Строим перпендикуляр n к плоскости Р(D АВС). Для этого через точку D2 проводим n2, перпендикулярно f2, а через D1проводим n1, перпендикулярно h1.

n (n1n2) ^Р (DАВС), так как

n1^h1; h P( DА1В1С1)

n2^f2; f P(DА2В2С2)

Построение чертежа двух параллельных плоскостей основано на теореме стереометрии: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Следовательно, чтобы построить плоскость Г', параллельную плоскости Г(АВС), достаточно провести через точку М две прямые, соответственно параллельные каким-нибудь двум пересекающимся прямым, принадлежащим плоскости Г, например сторонам (АВ) и (ВС) (рис. 4.8).  Р ис. 4.8

Плоскость Г'(а   b) параллельна плоскости Г(АВС), так как а  (АВ) и b   (ВС). Можно задать новую плоскость какими-нибудь другими пересекающимися прямыми, например горизонталью и фронталью, соответственно параллельными горизонтали и фронтали плоскости Г(АВС). Такая плоскость на рис. 4.8 проведена через точку N - плоскость   (h'   f') параллельна плоскости Г(АВС), так как h'   h и f'   f.

12. Способы преобразования чертежа.

Метод плоскопараллельного перемещения

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 8.1). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Рисунок 8.1 Определение натуральной величины отрезка методом плоскопараллельного перемещения

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.

2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.

Метод вращения вокруг оси перпендикулярной плоскости проекций

Плоскости носитель траекторий перемещения точек параллельны плоскости проекций. Траектория - дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ (рис. 8.2), выберем ось вращения (i) перпендикулярную горизонтальной плоскости проекций и проходящую через В1. Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка А1 переместиться в А'1, а точка В не изменит своего положения. Положение точки А'2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из А'1. Полученная проекция В2 А'2 определяет натуральную величину самого отрезка.

Рисунок 8.2 Определение натуральной величины отрезка методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций

Метод вращения вокруг оси параллельной плоскости проекций

Рассмотрим этот способ на примере определения угла между пересекающимися прямыми (рис.8.3). Рассмотрим две проекции пересекающихся прямых а и в которые пересекаются в точке К. Для то чтобы определить натуральную величину угла между этими прямыми необходимо произвести преобразование ортогональных проекций так, чтобы прямые стали параллельны плоскости проекций. Воспользуемся способом вращения вокруг линии уровня - горизонтали. Проведем произвольно фронтальную проекцию горизонтали h2 параллельно оси Ох, которая пересекает прямые в точках 12 и 22 . Определив проекции 11 и 11, построим горизонтальную проекцию горизонтали h1 . Траектория движения всех точек при вращении вокруг горизонтали - окружность, которая проецируется на плоскость П1 в виде прямой линии перпендикулярной горизонтальной проекции горизонтали.

Рисунок 8.3 Определение угла между пересекающимися прямыми, вращением вокруг оси параллельной горизонтальной плоскости проекций

Таким образом, траектория движения точки К1 определена прямой К1О1, точка О -центр окружности - траектории движения точки К. Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО .Продолжим прямую К1О1 так чтобы |О1К'1|=|КО| . Точка К'1 соответствует точке К , когда прямые а и в лежат в плоскости параллельной П1 и проведенной через горизонталь - ось вращения. С учетом этого через точку К'1 и точки 11 и 21 проведем прямые, которые лежат теперь в плоскости параллельной П1, а следовательно и угол фи - натуральная величина угла между прямыми а и в.