Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по генетике.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
97.81 Кб
Скачать

21Эпистаз

(от греч. epistasis — остановка, препятствие), один из типов взаимодействия генов, при к-ром аллели одного гена подавляют (эпистатируют) проявление аллелей др. генов. Символически эпистатирование обозначают знаком > («больше»). Различают рецессивный Э. (эпистатируют рецессивные аллели; выражается формулой аа > В —, вв)и доминантный Э. (эпистатируют доминантные аллели; выражается формулой А > В—, вв). Характерным для Э. является то, что определ. группы особей, обозначаемые разными фенотипич. радикалами, имеют одинаковый фенотип. Если признак контролируется, напр. двумя генами, Э. выражается в изменении соотношения расщепления по фенотипу среди гибридов второго поколения: 9:3:3:1 -> 12:3:1 при доминантном или 9:3:4 при рецессивном Э. Биохимич. основой Э. может быть многоэтапность процесса биосинтеза продукта, участвующего в формировании анализируемого признака., причём этапы этого процесса должны контролироваться разными генами. При этом аллели гена, контролирующего более ранние этапы этого процесса, будут эпистатировать над аллелями более «поздних» генов. При рассмотрении Э. на биохимич. уровне (когда признак — продукт конкретной реакции) Э. «превращается» в случай обычного независимого наследования разных элементарных признаков.

recessive epistasis - рецессивный эпистаз.

Форма эпистаза <epistasis>, при которой рецессивный аллель эпистатического гена, находясь в гомозиготном состоянии, подавляет экспрессию др. (гипостатического) гена.

dominant epistasis - доминантный эпистаз.

Форма эпистаза <epistasis> - подавление доминантным аллелем одного (эпистатического) гена действия аллельной пары другого (гипостатического) гена; классический пример Д.э. - взаимодействие генов оперения кур С (гипостатический) и I (эпистатический).

22 После вторичного открытия законов Менделя началась проверка их применимости к другим организмам. Одним из первых в эту работу включился английский биолог У.Бэтсон , который проводил опыты по скрещиванию животных. В частности, он изучал наследование разных признаков (окраски, формы гребешка и др.) при скрещивании кур разных пород. В этой работе были обнаружены признаки, которые зависели не от одного, а от нескольких генов. Бэтсон предложил и названия для разных случаев взаимодействия генов. Явление взаимодействия генов, при котором для проявления признака необходимо наличие двух неаллельных генов, называют комплементарностью, а гены, необходимые для проявления признака, комплементарными, или дополнительными. (Термин "комплементарный" произведен от лат. комплементум - дополняющий.)

Рассмотрим случай, когда аллели второго гена проявляются только при наличии доминантного аллеля гена A. Окраска мышей зависит в простейшем случае от двух генов. Мыши с генотипом аа лишены пигмента и имеют белый цвет. При наличии доминантного аллеля A пигмент вырабатывается и мышь как-то окрашена. Конкретный цвет определяется вторым геном. Его доминантный аллель С обуславливает серый цвет мыши, а рецессивный с - черный цвет. Таким образом, если рассматривать гомозиготные варианты, генотип серых мышей - AAСС, черных - AAсс, белых - ааСС или аасс. При скрещивании серой мыши AAСС с белой аасс в первом поколении все получается по Менделю: все гибриды имеют серый цвет (это гетерозиготы с генотипом АаСс). В F2, как легко проверить, получим 9/16 серых мышей, 3/16 черных и 4/16 белых ( рис. 96 ). Казалось бы, законы Менделя нарушены. Во-первых, при скрещивании серых и белых мышей в F2 возник новый фенотип - черные мыши. Во-вторых, отношение 9:3:4 отличается от обычного дигибридного расщепления 9:3:3:1. Но ведь это классическое расщепление получено для невзаимодействующих признаков, а здесь два гена взаимодействуют и определяют один признак - окраску (см. " Окраска и гены "). Для генотипов же (а они могут быть выявлены соответствующими скрещиваниями) законы Менделя строго соблюдаются.

Показано, что реально взаимодействуют не сами гены, а их продукты. Рассмотрим возможные варианты такого взаимодействия на молекулярном уровне для случая, когда для проявления некоторого признака необходимо присутствие доминантных аллелей двух разных генов.

Первый возможный вариант. Известно, что многие молекулы белка состоят из двух цепей, которые кодируются разными генами ( четвертичная структура белка ). Часто бывает, что такие белки нормально функционируют только в том случае, когда гены, кодирующие обе цепи, нормальны. В рассматриваемом случае такими генами являются доминантные аллели двух генов. Если хотя бы один из двух генов дефектен (рецессивный аллель), продукт тоже будет дефектен. Это, так сказать, механизм одновременного или параллельного взаимодействия.

Второй возможный вариант. Два гена кодируют ферменты, используемые в цепи реакций последовательно. Какое-то вещество, измененное под действием первого фермента, служит продуктом для работы второго фермента. И в этом случае для достижения результата необходима сохранность обоих генов ( рис. 98 ).

Возможны и более сложные варианты. Например, первый ген может отвечать за синтез белка, который связывает белок-репрессор, блокирующий работу второго гена, и тем самым инициирует второй ген.

Другой вариант комплементарного взаимодействия генов состоит в том, что для проявления признака в генотипе должны присутствовать доминантные аллели двух разных генов. Если отсутствует первый, то не проявляется действие второго, и наоборот. Рассмотрим конкретный пример. Известно, что у некоторых растений пурпурная окраска цветков возникает только при наличии двух доминантных генов С и Р. Эти гены необходимы для появления ферментов, вызывающих синтез пурпурного пигмента антоциана. (Кстати этот пример, как и предыдущий, показывает, что реально взаимодействуют конечно не сами гены, а их продукты.) Если имеется только один из доминантных генов или оба доминантных гена отсутствуют, то растение имеет белый цвет. Это показано для венчиков душистого горошка ( Пеннетом ), для зерен кукурузы и др. В некоторых случаях так же наследуется желтая окраска коконов у шелкопряда.

23 Полимери́я — взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммарного действия нескольких генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление в F2 по фенотипу при дигибридном скрещивании происходит в соотношении 1:4:6:4:1, а в целом соответствует третьей, пятой (при дигибридном скрещивании), седьмой (при тригибридном скрещивании) и т.п. строчкам в треугольнике Паскаля.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление в F2 по фенотипу при дигибридном скрещивании — 15:1.

Пример полимерии — наследование цвета кожи у людей, который зависит (в первом приближении) от четырёх генов с кумулятивным эффектом.

24 Генные болезни — это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена. Термин употребляется в отношении моногенных заболеваний, в отличие от более широкой группы — Наследственные заболевания (см.)

Причины генных Заболеваний

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни связано с первичным эффектом мутантного аллеля.

Основная схема генных болезней включает ряд звеньев:

мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм

В результате мутации гена на молекулярном уровне возможны следующие варианты:

синтез аномального белка;

выработка избыточного количества генного продукта;

отсутствие выработки первичного продукта;

выработка уменьшенного количества нормального первичного продукта.

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на клеточном уровне. При различных болезнях точкой приложения действия мутантного гена могут быть как отдельные структуры клетки — лизосомы, мембраны, митохондрии, пероксисомы, так и органы человека.

Клинические проявления генных болезней, тяжесть и скорость их развития зависят от особенностей генотипа организма, возраста больного, условий внешней среды (питание, охлаждение, стрессы, переутомление) и других факторов.

Особенностью генных (как и вообще всех наследственных) болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. Впервые гетерогенность наследственных болезней была выявлена С. Н. Давиденковым в 1934 г.

Общая частота генных болезней в популяции составляет 1-2 %. Условно частоту генных болезней считают высокой, если она встречается с частотой 1 случай на 10000 новорожденных, средней — 1 на 10000 — 40000 и далее — низкой.

Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

Классификация

К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока ещё нет единой классификации наследственных болезней обмена веществ.

Болезни аминокислотного обмена

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний — недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

фенилкетонурия — нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;

алкаптонурия — нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;

глазно-кожный альбинизм — обусловлен отсутствием синтеза фермента тирозиназы.

Нарушения обмена углеводов

галактоземия — отсутствие фермента галактозо-1-фосфат-уридилтрансферазы и накопление в крови галактозы;

гликогеновая болезнь — нарушение синтеза и распада гликогена.

Болезни, связанные с нарушением липидного обмена

болезнь Ниманна-Пика — снижение активности фермента сфингомиелиназы, дегенерация нервных клеток и нарушение деятельности нервной системы;

болезнь Гоше — накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

Наследственные болезни пуринового и пиримидинового обмена

подагра;

Синдром Леша-Найхана.

Болезни нарушения обмена соединительной ткани

синдром Марфана («паучьи пальцы», арахнодактилия) — поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина;

мукополисахаридозы — группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов.

Фибродисплазия — заболевание соединительной ткани, связанное с её прогрессирующим окостенением в результате мутации в гене ACVR1

Наследственные нарушения циркулирующих белков

гемоглобинопатии — наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов

болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте

муковисцидоз;

непереносимость лактозы и др.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Аномалии числа хромосом

Болезни, обусловленные нарушением числа аутосом

синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

Нарушения структуры хромосом

Основная статья: Хромосомные перестройки

Транслокации — обменные перестройки между негомологичными хромосомами.

Делеции — потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

Инверсии — повороты участка хромосомы на 180 градусов.

Дупликации — удвоения участка хромосомы.

Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

В настоящее время у человека известно более 700 заболеваний, вызванных изменением числа или структуры хромосом. Около 25 % приходится на аутосомные трисомии, 46 % — на патологию половых хромосом. Структурные перестройки составляют 10,4 %. Среди хромосомных перестроек наиболее часто встречаются транслокации и делеции.

К мультифакториальным болезням (болезням с наследственной предрасположенностью) относится самая большая группа болезней - язвенная болезнь желудка и двенадцатиперстной кишки, бронхиальная астма, сахарный диабет, шизофрения, эпилепсия и др. Их иногда обозначают многофакторными или полигемпыми болезнями. Мультифакториальные болезни имеют сложный характер наследования. Мультифакториальные болезни связаны с действием многих генов, поэтому их называют мультифакториальными (англ. factor- ген). Генетика частых хронических заболеваний детского возраста, а также и взрослых, остается одной из сложных проблем медицинской генетики. Болезни с наследственной предрасположенностью могут реализоваться только путем тесного взаимодействия генетической конституции (полигенов или мопогенов) индивида и факторов внешней среды как неотъемлемых факторов. Предполагается, что без средовых факторов не может реализоваться генетическая предрасположенность. Это связано с тем, что при заболеваниях, связанных с нарушением системы аллельных генов, снижена норма реакций и адаптация к различным воздействиям. Например, формирование гипертонической болезни наблюдается на фоне стресса, психических нагрузок; сахарного диабета - при нарушениях питания, переедании, ожирении и т.д. Эта группа болезней сложна для изучения, так как приходится выделить не только наследственные и средовые факторы, но и определить их удельный вес. Для этих целей в настоящее время используются специальные математические методы, позволяющие оценить соотносительный вклад каждой компоненты в развитие заболевания. Наследование мультифакториальных заболеваний не подчиняется законам Г. Менделя, как это имеет место при моногенных болезнях, а основано на эмпирических данных. Мультифакториальные болезни обусловлены как наследственными факторами, так и в значительной мере неблагоприятными факторами внешней среды. Причем это тесное, неразделимое взаимодействие. Эта самая большая группа болезней, которая составляет более 90-92 % от общего числа наследственно обусловленной патологии. С возрастом частота данной патологии возрастает. Если в детском возрасте на долю мультифакториальных болезней приходится около 10 %, то в пожилом - около 30 %. К полигенпым болезням относят язвенную болезнь желудка и 12-перстной кишки, ревматизм, ишемическую болезнь сердца, цирроз печени, сахарный диабет, бронхиальную астму, шизофрению, псориаз и др. Обнаруживается высокая частота заболеваний в популяции, так, шизофренией болеют около 1 % населения, сахарным диабетом - 5 %, аллергическими болезнями - более 10 %, гипертонической болезнью - около 30 %. Полигенная природа болезней с наследственным предрасположением подтверждается с помощью генеалогического, близнецового и популяционного методов. Достаточно объективен и чувствителен близнецовый метод. При его использовании проводят сравнение конкордантности моно- и дизиготных близнецов или сравнение конкордантности выросших вместе или порознь монозиготных близнецов. В результате близнецовых исследований установлена более высокая конкордантность монозиготных близнецов по сравнению с дизиготными по гипертонической болезни, инфаркту миокарда, инсульту, ревматизму и другим заболеваниям, включая ряд инфекционных (туберкулез, полиомиелит и др.). Это указывает на генетическую предрасположенность к указанным заболеваниям. Для оценки риска при мультифакториальных болезнях собирают эмпирические данные о популяционной и семейственной частоте каждого заболевания или порока развития. Распределение населения по подверженности к мультифакториальным болезням представлено на рисунке. Модель полигенного наследования, как и модель моногенного заболевания, предполагает, что вероятность заболевания среди родственников больного выше, чем в общей популяции. Однако в отличие от моногенных форм патологии при полигенном наследовании реализация болезни происходит при условии преодоления порога накопления генетических и средовых влияний (превышение «критической массы»). Поскольку в развитии мультифакториальных болезней участвуют много генов или даже генных комплексов, они сложны для генетического анализа. Каждая из мутаций отдельно не может вызвать развитие болезни. Реализация наследственного фактора путем воздействия неблагоприятных влияний среды - непременное условия развития мультифакториальных болезней. В связи со сложностью природы этой группы болезней и их несоответствие классическим типам наследования частот говорят об аддитивно-полигенном наследовании с пороговым эффектом, т.е. развитие заболевания достигается только тогда, когда суммарное действие генов (аллелей) превышает определенный порог, необходимый для развития признака. Таким образом, при определенном пороге, «пике подверженности» в сочетании с комплексом неблагоприятных средовых факторов создается фенотип болезни. Исходя из теоретической модели полигенных болезней, можно заключить, что вероятность развития болезни среди родственников больных, страдающих мультифакториальным заболеванием, намного выше, чем в общей популяции. Подверженность тем выше, чем выше уровень влияния средовых факторов, поскольку родственники имеют общую среду обитания, особенно по отношению к родственникам 1-й степени родства. Можно надеяться, что прогресс в области изучения генома человека послужит большой помощью в раскрытии роли полигенов в возникновении и формировании болезней с наследственным предрасположением.