
- •Средства измерений.
- •Основные характеристики измерений.
- •3. Способы выражения результатов измерений
- •Контрольно-поверочные измерения.
- •Способы получения результатов измерений.
- •Абсолютные и относительные измерения
- •Статистические, динамические и статические измерения.
- •Почему необходима теория измерений?
- •Условия измерений.
- •Классы точности средств измерений.
- •Измерение физической величины.
- •13. Особенности измерительного процесса.
- •14. Сущность измерительного процесса.
- •15. Измерения как один из способов познания.
- •16. Измерительные приборы прямого преобразования.
- •17. Классификация средств измерения.
- •18. Порог чувствительности и рабочий диапазон.
- •19. Апостериорные факторы влияющие на качество измерений.
- •20. Априорные факторы влияющие на качество измерений.
- •21. Абсолютная шкала.
- •22. Шкала разностей.
- •23. Шкала отношений.
- •24. Шкала интервалов.
- •25. Порядковая шкала.
- •26. Шкала наименований.
- •27. Измерительные шкалы.
- •28. Третья аксиома измерений.
- •29. Вторая аксиома измерений.
- •30. Первая аксиома измерений.
- •31. Основные этапы подготовки измерительного эксперимента.
- •32. Поверка средств измерений.
- •33. Проведение обработки результатов эксперимента.
- •34. Общие вопросы оптимального планирования измерительного эксперимента.
- •35. Планирование пассивного эксперимента.
- •36. Системы величин.
- •37. Связи между величинами, физические уравнения.
- •38. Кратные и дольные единицы.
- •39. Единицы измерения.
- •40. Нормативно–правовая основа метрологического обеспечения.
- •41. Меры обеспечения единства измерений.
- •42. Система обозначений средств измерений.
- •43. Средства измерений сравнений.
- •44. Аттестат методики выполнения измерений.
- •45. Разработка методик выполнения измерений.
- •46. Оценка чувствительности измерительного преобразователя.
- •47. Оценка неисключённой систематической погрешности в к- той точке диапазона измерений.
- •48. Оценка вариации в точке х(к) диапазона измерения.
- •49. Правила округления значений погрешности и результата измерений.
- •50.Вычисление погрешности при различном нормировании класса точности.
- •51.Специальные формулы нормирования погрешностей .
- •52.Форма полосы погрешности при одновременном присутствии аддитивной и мультипликативной составляющих.
- •53.Виды измерений.
- •54.Инструментальные измерения.
- •55.Органолептический метод.
- •56.Результаты измерения по шкале порядка.
- •57.Результат измерений.
- •58.Методы измерений.
- •59.Виды средних величин
- •60.Алгоритм анализа данных.
Статистические, динамические и статические измерения.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.
По используемому методу измерения – совокупности приемов использования принципов и средств измерений различают:
метод непосредственной оценки;
метод сравнения с мерой;
метод противопоставления;
метод дифференциальный;
метод нулевой;
метод замещения;
метод совпадений.
По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.
Почему необходима теория измерений?
Теория измерений является одной из составных частей прикладной статистики. Она входит в состав статистики объектов нечисловой природы (нечисловой статистики).
Использование чисел в жизни и хозяйственной деятельности людей отнюдь не всегда предполагает, что эти числа можно складывать и умножать, производить иные арифметические действия. Что бы вы сказали о человеке, который занимается умножением телефонных номеров? И отнюдь не всегда 2+2=4. Если вы вечером поместите в клетку двух животных, а потом еще двух, то отнюдь не всегда можно утром найти в этой клетке четырех животных. Их может быть и много больше - если вечером вы загнали в клетку овцематок или беременных кошек. Их может быть и меньше - если к двум волкам вы поместили двух ягнят. Числа используются гораздо шире, чем арифметика.
Так, например, мнения экспертов часто выражены в порядковой шкале (подробнее о шкалах говорится ниже), т.е. эксперт может сказать (и обосновать), что один показатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или убывания) интенсивности интересующей организаторов экспертизы характеристики. Ранг - это номер (объекта экспертизы) в упорядоченном ряду значений характеристики у различных объектов. Такой ряд в статистике называется вариационным. Формально ранги выражаются числами 1, 2, 3, ..., но с этими числами нельзя делать привычные арифметические операции. Например, хотя в арифметике 1 + 2 = 3, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении, интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не всем известная с начальной школы арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Это и есть теория измерений (ТИ).
При чтении литературы надо иметь в виду, что в настоящее время термин "теория измерений" применяется для обозначения целого ряда научных дисциплин. А именно, классической метрологии (науки об измерениях физических величин), рассматриваемой здесь ТИ, некоторых других научных направлений, например, алгоритмической теории измерений. Обычно из контекста понятно, о какой конкретно теории идет речь.