
- •Средства измерений.
- •Основные характеристики измерений.
- •3. Способы выражения результатов измерений
- •Контрольно-поверочные измерения.
- •Способы получения результатов измерений.
- •Абсолютные и относительные измерения
- •Статистические, динамические и статические измерения.
- •Почему необходима теория измерений?
- •Условия измерений.
- •Классы точности средств измерений.
- •Измерение физической величины.
- •13. Особенности измерительного процесса.
- •14. Сущность измерительного процесса.
- •15. Измерения как один из способов познания.
- •16. Измерительные приборы прямого преобразования.
- •17. Классификация средств измерения.
- •18. Порог чувствительности и рабочий диапазон.
- •19. Апостериорные факторы влияющие на качество измерений.
- •20. Априорные факторы влияющие на качество измерений.
- •21. Абсолютная шкала.
- •22. Шкала разностей.
- •23. Шкала отношений.
- •24. Шкала интервалов.
- •25. Порядковая шкала.
- •26. Шкала наименований.
- •27. Измерительные шкалы.
- •28. Третья аксиома измерений.
- •29. Вторая аксиома измерений.
- •30. Первая аксиома измерений.
- •31. Основные этапы подготовки измерительного эксперимента.
- •32. Поверка средств измерений.
- •33. Проведение обработки результатов эксперимента.
- •34. Общие вопросы оптимального планирования измерительного эксперимента.
- •35. Планирование пассивного эксперимента.
- •36. Системы величин.
- •37. Связи между величинами, физические уравнения.
- •38. Кратные и дольные единицы.
- •39. Единицы измерения.
- •40. Нормативно–правовая основа метрологического обеспечения.
- •41. Меры обеспечения единства измерений.
- •42. Система обозначений средств измерений.
- •43. Средства измерений сравнений.
- •44. Аттестат методики выполнения измерений.
- •45. Разработка методик выполнения измерений.
- •46. Оценка чувствительности измерительного преобразователя.
- •47. Оценка неисключённой систематической погрешности в к- той точке диапазона измерений.
- •48. Оценка вариации в точке х(к) диапазона измерения.
- •49. Правила округления значений погрешности и результата измерений.
- •50.Вычисление погрешности при различном нормировании класса точности.
- •51.Специальные формулы нормирования погрешностей .
- •52.Форма полосы погрешности при одновременном присутствии аддитивной и мультипликативной составляющих.
- •53.Виды измерений.
- •54.Инструментальные измерения.
- •55.Органолептический метод.
- •56.Результаты измерения по шкале порядка.
- •57.Результат измерений.
- •58.Методы измерений.
- •59.Виды средних величин
- •60.Алгоритм анализа данных.
36. Системы величин.
Система физических величин— совокупность взаимосвязанных физических величин, образованная по принципу, когда одни физические величины являются независимыми (основными физическими величинами), а другие являются их функциями (производными физическими величинами). СФВ представляет собой структурную схему связей физических величин. Эти связи описываются математическими выражениями, называемыми определяющими уравнениями.
С понятием СФВ тесно связано понятие систем единиц физических величин (СЕФВ). Система единиц называется когерентной для данной системы величин, если единицы измерения производных величин (производные единицы) в системе единиц когерентны, то есть представляют собой произведения степеней единиц основных величин (основных единиц) с коэффициентом пропорциональности, равным единице.
На практике термин «СФВ» применяется редко. Обычно говорят о формулах в системах единиц (СИ, СГС и т. д.), даже если в исследовании единицы измерения и числовые значения величин не используются. 1. Международная система величин (англ. International System of Quantities, ISQ). Использует размерные электрическую и магнитную постоянные и рационализированную запись формул (в уравнениях Максвелла отсутствует коэффициент 4π).
В качестве основных физических величин в ISQ используются:
L — длина.
М — масса.
Т — время.
I — электрический ток.
Θ — термодинамическая температура.
J — сила света.
N — количество вещества.
Когерентной системой единиц для ISQ является Международная система единиц (СИ).
2. Абсолютная электростатическая система величин. Электрическая постоянная принимается за безразмерную единицу, запись формул не рационализирована. Когерентной системой единиц является СГСЭ.
3. Абсолютная электромагнитная система величин. Магнитная постоянная принимается за безразмерную единицу, запись формул не рационализирована. Когерентной системой единиц является СГСМ.
4. Система величин Гаусса — Максвелла. Электрические величины определяются по формулам электростатической системы, магнитные — по формулам абсолютной электромагнитной системы. Когерентной системой единиц является СГС-гауссова.
5. Система величин Лоренца — Хевисайда. Отличается от предыдущей рационализированной записью формул.
6. Система величин с нерационализированной записью формул и размерными электрической и магнитной постоянными (любая из них может быть принята за основную, тогда другая будет производной). Когерентными системами единниц являются СГСε и СГСμ.
СФВ тесно связаны с задачами моделирования и описания физической реальности на языке Verilog-AMS.
37. Связи между величинами, физические уравнения.
Физическая величина (англ. physical quantity) – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Уравнение, отражающее связь между величинами, обусловленную законами природы, в котором под буквенными символами понимают физические величины.
Уравнение v = l/t отражает существующую зависимость скорости v от пути l и времени t.
Физические уравнения для этапов до образования трещин и пофте их образования совместно с уравнениями равновесия, геометрическими уравнениями и граничными условиями составляют замкнутую систему уравнений для расчета железобетонного элемента в условиях плосконапряженного состояния и температурных воздействий. Расчет железобетонного элемента выполняется на ЭВМ в форме метода конечных элементов, метода конечных разностей, метода ортогонализации и др. МКЭ обладает рядом преимуществ, что делает его применение предпочтительным. Метод имеет наглядную механическую трактовку, удачно сочетает матричную форму расчета с удобствами использования ЭВМ. Помимо этого, после образования трещин модель железобетона имеет вид элемента конечных размеров Физические уравнения выражают следующее: поле деформаций 3ij в данный момент времени определяется не только мгновенным напряжением s j ( связанными с деформациями обобщенным законом Гука), но и предшествующими значениями напряжений с помощью некоторой наследственной функции. Объемное деформирование в принимается упругим, так как объемная ползучесть мала по сравнению со сдвиговой. Заметим, что наследственная функция имеет своим аргументом разность ( i - - т), то есть уравнения инвариантны относительно начала отсчета времени. Физические уравнения могут быть как определениями физических величин, так и формулировками физических законов. Впрочем, это деление не всегда можно провести достаточно четко.
Любое физическое уравнение устанавливает зависимость не только между входящими в него величинами, но и их размерностями. Все члены физического уравнения, являющиеся комбинациями различных величин, имеют одинаковую размерность.
Приведенные физические уравнения ( обобщенный закон Гука), выражающие зависимость между напряжениями и деформациями, справедливы только в пределах упругости, когда не возникают пластические деформации.