
- •Средства измерений.
- •Основные характеристики измерений.
- •3. Способы выражения результатов измерений
- •Контрольно-поверочные измерения.
- •Способы получения результатов измерений.
- •Абсолютные и относительные измерения
- •Статистические, динамические и статические измерения.
- •Почему необходима теория измерений?
- •Условия измерений.
- •Классы точности средств измерений.
- •Измерение физической величины.
- •13. Особенности измерительного процесса.
- •14. Сущность измерительного процесса.
- •15. Измерения как один из способов познания.
- •16. Измерительные приборы прямого преобразования.
- •17. Классификация средств измерения.
- •18. Порог чувствительности и рабочий диапазон.
- •19. Апостериорные факторы влияющие на качество измерений.
- •20. Априорные факторы влияющие на качество измерений.
- •21. Абсолютная шкала.
- •22. Шкала разностей.
- •23. Шкала отношений.
- •24. Шкала интервалов.
- •25. Порядковая шкала.
- •26. Шкала наименований.
- •27. Измерительные шкалы.
- •28. Третья аксиома измерений.
- •29. Вторая аксиома измерений.
- •30. Первая аксиома измерений.
- •31. Основные этапы подготовки измерительного эксперимента.
- •32. Поверка средств измерений.
- •33. Проведение обработки результатов эксперимента.
- •34. Общие вопросы оптимального планирования измерительного эксперимента.
- •35. Планирование пассивного эксперимента.
- •36. Системы величин.
- •37. Связи между величинами, физические уравнения.
- •38. Кратные и дольные единицы.
- •39. Единицы измерения.
- •40. Нормативно–правовая основа метрологического обеспечения.
- •41. Меры обеспечения единства измерений.
- •42. Система обозначений средств измерений.
- •43. Средства измерений сравнений.
- •44. Аттестат методики выполнения измерений.
- •45. Разработка методик выполнения измерений.
- •46. Оценка чувствительности измерительного преобразователя.
- •47. Оценка неисключённой систематической погрешности в к- той точке диапазона измерений.
- •48. Оценка вариации в точке х(к) диапазона измерения.
- •49. Правила округления значений погрешности и результата измерений.
- •50.Вычисление погрешности при различном нормировании класса точности.
- •51.Специальные формулы нормирования погрешностей .
- •52.Форма полосы погрешности при одновременном присутствии аддитивной и мультипликативной составляющих.
- •53.Виды измерений.
- •54.Инструментальные измерения.
- •55.Органолептический метод.
- •56.Результаты измерения по шкале порядка.
- •57.Результат измерений.
- •58.Методы измерений.
- •59.Виды средних величин
- •60.Алгоритм анализа данных.
Средства измерений.
Применяемые при измерениях технические средства, имеющие нормированные метрологические характеристики (характеристики, влияющие на точность измерений), называют средствами измерений. К средствам измерений относят эталоны физических величин, меры, измерительные приборы, измерительные преобразователи, измерительно-вычислительные комплексы (ИВК), компьютерно-измерительные системы (КИС) и измерительные информационные системы (ИИС). Измерительный преобразователь — структурный элемент более сложных средств измерений, имеющий самостоятельные метрологические характеристики. Различают первичные, передающие, промежуточные и масштабные преобразователи. Первичные преобразователи иногда называют датчиками. На основе нескольких измерительных преобразователей создают измерительные приборы и меры. Измерительный прибор предназначен для образования выходного сигнала в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы делят на аналоговые и цифровые. Показание аналогового прибора является непрерывной функцией измеряемой величины. К аналоговым относят, например, приборы со стрелочными указателями. Цифровые приборы вырабатывают дискретный сигнал измерительной информации в цифровой форме. Мера служит для воспроизведения физической величины заданного размера. Так, мерами являются образцовая катушка индуктивности или образцовый конденсатор переменной емкости. Измерительно-вычислительные комплексы представляют собой совокупность средств измерений и ЭВМ, объединенных с помощью устройств сопряжения и предназначенных для измерений, научных исследований и расчетов. Такие же функции выполняют КИС, построенные на основе микроЭВМ, дополненных измерительными модулями. Измерительные информационные системы — совокупность функционально объединенных измерительных, вычислительных и других вспомогательных технических средств, предназначенных для получения измерительной информации, ее преобразования и обработки с целью представления в удобном потребителю виде либо автоматического осуществления контроля, диагностики или идентификации. Системы с высокой степенью автоматизации процесса измерений и обработки экспериментальных результатов иногда называют автоматизированными измерительными системами (АИС) или автоматизированными системами научных исследований (АСНИ). В настоящее время получают распространение приборы, состоящие из персонального компьютера, дополненного платой сбора данных, содержащей АЦП и образцовые меры. Плата обеспечивает преобразование аналогового измерительного сигнала в цифровой, функции его обработки выполняет компьютер. Для наглядного отображения информации и удобства управления процессом измерений на экране монитора воспроизводят лицевую панель измерительного прибора со всеми элементами настройки, управление которыми производят с клавиатуры компьютера или мышью. Такие приборы называются виртуальными.
Основные характеристики измерений.
Выделяют следующие основные характеристики измерений:
метод, которым проводятся измерения;
принцип измерений;
погрешность измерений;
точность измерений;
правильность измерений;
достоверность измерений.
Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.
Существует несколько критериев классификации методов измерений.
1. По способам получения искомого значения измеряемой величины выделяют:
прямой метод (осуществляется при помощи прямых, непосредственных измерений);
косвенный метод.
По приемам измерения выделяют:
контактный метод измерения;
бесконтактный метод измерения.
Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.
При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.
3. По приемам сравнения величины с ее мерой выделяют:
метод непосредственной оценки;
метод сравнения с ее единицей.
Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.
Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.
Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.
Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.
Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.
Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).
Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.