Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ МИКРО.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
152.52 Кб
Скачать

Функции в клетках

Присутствие плазмид в клетках может быть объяснено преимуществами, которые дают плазмидные гены клетке-хозяину (возможность расти в присутствии антибиотика, использование более широкого круга субстратов, защита от бактериофагов, устранение конкурентов путем синтеза бактериоцинов) или же теорией эгоистичной ДНК, как в случае криптических плазмид (т. е. плазмида поддерживается благодаря своей приспособленности к условиям внутри клетки). Некоторые плазмиды, содержащие так называемые островки патогенности, придают бактериям патогенные свойства.

13)Клетки бактерий имеют более простое строение, чем клетки других организмов, т.к. бактерии – это прокариоты. У бактерий нет митохондрий, эндоплазматического ретикулума, комплекса Гольджи, лизосом, пероксисом и пр. ^ Необязательные структуры: капсула, жгутики, фимбрии (пили), споры, плазмиды, включения. Капсула. Строение: наружный толстый слой слизи определенной формы и упорядоченного строения ( микрокапсула – более тонкое слизистое образование, выявляемое при электронной микроскопии).Состоит из полисахаридов или белков (возбудители сибирской язвы и чумы). Патогенные бактерии образуют капсулу внутри организма хозяина (например, пневмококки, бациллы сибирской язвы). В чистых культурах бактерий капсула образуется реже. Функции: 1) защита от повреждений и высыхания (капсулы гидрофильны и хорошо связывают воду); 2) защита от фагоцитоза патогенных бактерий в макроорганизме (капсула - признак вирулентности этих бактерий). Капсулы окрашиваются по методу Бурри-Гинса. Клетки окрашиваются в красный цвет, капсулы бесцветные, тушь создает темный фон (негативное контрастирование). ^ Жгутики. Строение: тонкие нити, отходящие от ЦПМ. Состоят из фибрилл, покрытых чехлом. Фибриллы состоят из сократительного белка флагеллина. Жгутики прикрепляются к ЦПМ и клеточной стенке специальными дисками (базальное тело). Импульсы в базальном теле вызывают сокращение белка флагеллина и жгутики совершают вращательные движения. Функция: движение клеток. По количеству и расположению жгутиков выделяют следующие группы бактерий: - монотрихи – один жгутик на одном из концов клетки (холерный вибрион); - перитрихи – 20-30 жгутиков по всей клетке (кишечная палочка); - лофотрихи – пучок (несколько) жгутиков на одном конце клетки (синегнойная палочка); - амфитрихи – один или пучок жгутиков на противоположных концах клетки (спириллы). Жгутики выявляют:  1) метод серебрения по Морозову; 2) в препаратах "раздавленная" или "висячая" капля (витальные - прижизненные препараты); вывод о том, что есть жгутики, делают по подвижности микробов; 3) при помощи электронной микроскопии. ^ Ворсинки (фимбрии и пили). Строение: поверхностные нити, более тонкие и короткие, чем жгутики. Состоят из белка пилина. Ворсинки выполняют различные функции. Ворсинки общего типа покрывают всю поверхность клетки и прикрепляют бактерии к поверхности и к поражаемым клеткам (адгезия), участвуют в питании, водно-солевом обмене. Половые ворсинки или пили участвуют в конъюгации. Их образуют мужские клетки – доноры, которые содержат F-плазмиды. Включения: гликоген, гранулеза, полиметафосфаты (волютин), жиры, кристаллы солей. Функция: запасные питательные вещества, нерастворимые конечные продукты. Волютин окрашивается метиленовым синим в красно-фиолетовый цвет, а цитоплазма клетки – голубая. Зерна волютина окрашивают и пометоду Нейссера. Они окрашиваются в темно-синий цвет, а цитоплазма – в желтый цвет. Гликоген раствором Люголя окрашивается в красно-бурый цвет, а гранулеза – в серо-синий цвет. Капли жира растворами судана III окрашиваются в красно-оранжевый цвет. Пары осмиевой кислоты окрашивают жировые капли в черный цвет. 

14) Для окрашивания препаратов пользуются кислыми, щелочными и нейтральными анилиновыми красителями. Наиболее широкое применение нашли основной и кислый фуксин, метиленовый синий, генцианвиолет и везувин.

Простой способ окраски мазков производится водным фуксином Пфейффера и метиленовым синим Леффлера. Готовят водный фуксин из фенолового фуксина Циля, разводя его дистиллированной водой в соотношении 1:10. Состав РАСТВОРА ФУКСИНА ЦИЛЯ: основной фуксин – 1 г; спирт этиловый 96 % – 10 мл; фенол кристаллический – 5 г; глицерин – несколько капель; вода дистиллированная – 100 мл.

Метиленовый синий Леффлера готовят, прибавляя к 30 мл насыщенного раствора метиленового синего (10 г метиленового синего в 100 мл 96 % этилового спирта) 1 мл 1% NaOH или KOH и 100 мл дистиллированной воды.

После окрашивания красители сливают, препарат промывают водой и высушивают между листками фильтровальной бумаги. На сухой мазок наносят каплю масла и микроскопируют с использованием иммерсионного объектива оптического микроскопа. Способность микробов воспринимать красители называетсятинкториальными свойствами.

При окраске щелочным метиленовым синим по Леффлеру (3–5 мин) гранулы волютина у дифтерийных коринебактерий приобретают темно–синий, а палочка – голубой цвет. 

При сложных методах окраски мазков применяют два–три различных по цвету красителя, что позволяет дифференцировать микробы и выявить некоторые нюансы в деталях их строения. К таким методам относят окраску по Граму, Цилю–Нельсену, Нейссеру, Бурри–Гинсу, Романовскому–Гимзе и некоторые другие.

При окраске по НЕЙССЕРУ гранулы ВОЛЮТИНА у дифтерийных коринебактерий окрашиваются в сине–черный, а бактерия – в желтый цвет. Мазок окрашивают: 1) 1 мин уксуснокислым метиленовым синим (метиленовый синий – 0,1 г, спирт – 2 мл, ледяная уксусная кислота – 5 мл, дистиллированная вода – 100 мл); 2) сливают краситель и мазок промывают водой; 3) на 20– 30 с наносят раствор Люголя; 4) 1 –3 мин окрашивают везувином (прокипяченная и отфильтрованная взвесь 2 г везувина в смеси 60 мл спирта и 40 мл дистиллированной воды).

Количественное содержание ПЕПТИДОГЛИКАНА, содержащегося в # стенке, определяет характер окраски бактерий и других прокариот по ГРАМУ. Те из них, которые содержат в клеточной стенке большое его количество (около 90 % пептидогликана), окрашиваются по Граму в сине–фиолетовый цвет и их называют грамположительными, все другие, содержащие в оболочке 5–20 % пептидогликана, – в розовый цвет и их называют грамотрицательными. Толщина слоя пептидогликана в клеточной стенке грамположительных бактерий в несколько раз больше, чем у грамотрицательных. Техника окраски по Граму: 1. Фиксированный мазок 1–2 мин окрашивают раствором генцианвиолета (генцианвиолет – 1 г, этанол 96 % – 10 мл, фенол кристаллический – 2 г, вода дистиллированная – 100 мл; по методу Синева его покрывают пропитанной тем же красителем полоской фильтровальной бумаги, которую смачивают 2–3 каплями воды). 2. Слив генцианвиолет (сняв полоску бумаги Синева), мазок 1 мин обрабатывают раствором Люголя и, не промывая водой, сливают его. 3. Обесцвечивают спиртом в течение 0,5 мин, промывают водой. 4. Окрашивают 1–2 мин фуксином Пфейффера. 5. Мазок ополаскивают водой и высушивают.

Для выявления грамположительных КИСЛОТО– И СПИРТОУСТОЙЧИВЫХ микобактерий туберкулеза и лепры, которые из–за большого количества в клеточных оболочках жировосковых веществ, миколовой кислоты и других оксикислот непроницаемы для разведенных растворов красителей, используют окраску по методу ЦИЛЯ – НИЛЬСЕНА. Окрашивание их по этому способу достигается при помощи концентрированного фенолового фуксина Циля с подогреванием над пламенем горелки до закипания и отхождения паров. Окрашенные с применением термокислотной обработки микобактерии не обесцвечиваются слабыми растворами минеральных кислот и этилового спирта. Техника окраски. 1. Фиксированный мазок покрывают полоской фильтровальной бумаги, на которую наносят фуксин Циля, и несколько раз подогревают над пламенем горелки до появления паров, подливая краситель, далее бумагу снимают и промывают водой. 2. Препарат обрабатывают (обесцвечивают) 5 % раствором серной кислоты и промывают водой. 3. На мазок наливают водно–спиртовой раствор метиленового синего, спустя 3–5 мин промывают водой и высушивают. Кислотоустойчивые бактерии окрашиваются в интенсивно красный цвет, остальные виды микробов, обесцвечивающиеся в процессе обработки препарата кислотой, – в светло–синий.

При необходимости дифференциации возбудителей лепры от микобактерии туберкулеза используют окраску мазков по методу Семеновича–Марциновского – микобактерии лепры окрашиваются в красный цвет, а микобактерии туберкулеза остаются неокрашенными.

СПОРЫ. Эндоспоры бактерий выдерживают длительное кипячение, действие горячего воздуха (140–150°С) и химических дезинфицирующих веществ, многие годы сохраняются в почве, на растительности и предметах. Попадая в организм человека и животных, споры патогенных бактерий прорастают в материнские клетки за несколько часов.

Водным фуксином, водно–спиртовым метиленовым синим и по Граму эндоспоры не окрашиваются, так как их плотная многослойная оболочка непроницаема для обычных красителей. В мазках из патологических материалов, культур бацилл и клостридии, окрашенных простыми красителями, споры выглядят в виде бесцветных телец внутри окрашенных в соответствующий цвет вегетативных клеток или вне их. Окрашивать их можно по методу Циля–Нельсена, используя для обесцвечивания мазков после обработки их фуксином Циля не 5%, а 1% серную кислоту. При этом эндоспоры, так же как микобактерии туберкулеза, красятся в розовый цвет и будут хорошо видны на синем фоне бактерий. Для окрашивания спор можно использовать метод по ОЖЕШКО: 1) протравка оболочки споры горячей кислотой; 2) окраска по Цилю–Нильсену.

При исследовании морфологии паразитов крови (спирохеты – бледная трепонема, простейшие – малярийный плазмодий), а т/же ФЭ, используют окраску по РОМАНОВСКОМУ–ГИМЗА. Краска состоит из смеси азура, эозина и метиленовой сини. Окрашивает ЦИТОПЛАЦМУ в голубой, а ЯДРА в красно–фиолетовый цвет. Этот метод позволяет обнаружить различные цитологические детали.

Мазок для люминесцентной микроскопии готовят обычным образом, фиксируют в ацетоне и наносят на него флюорохром на 20–30 мин. Сделанный препарат промывают проточной водой, покрывают покровным стеклом и микроскопируют.

 

15) Образование эндоспор - процесс, имеющий место только в мире прокариот. Бактериальные эндоспоры - это особый тип покоящихся клеток грамположительных эубактерий, формирующихся эндогенно, т.е. внутри цитоплазмы "материнской" клетки ( спорангия ), обладающих специфическими структурами (многослойными белковыми покровами, наружной и внутренней мембранами, кортексом) и устойчивостью к высоким температурам и дозам радиации, летальным в норме для вегетативных клеток ( рис. 22 , Г). Эндоспорам свойственно также и особое физическое состояние протопласта .

К спорообразующим относится большое число эубактерий приблизительно из 15 родов, характеризующихся морфологическим и физиологическим разнообразием ( табл. 7 ). Среди них имеются палочковидные, сферические, мицелиальные формы, спириллы и нитчатые организмы. Все они имеют строение клеточной стенки, характерное для таковой грамположительных эубактерий. Ни в одном случае не выявлена наружная липополисахаридная мембрана, несмотря на то, что многие роды и виды спорообразующих бактерий не окрашиваются по Граму . По типу питания среди них обнаружены хемоорганогетеротрофы , факультативныехемолитоавтотрофы и паразитические формы.

Отношение к кислороду также разнообразно: часть спорообразующих форм представлена аэробами и факультативными анаэробами , другая часть включает облигатных анаэробов - от аэротолерантных форм до высокочувствительных к О2.

Лучше всего процесс спорообразования изучен у представителей родов Bacillus и Clostridium , хотя имеющиеся данные позволяют сделать вывод о принципиальной однотипности этого процесса у всех видов, образующих эндоспоры. В каждой бактериальной клетке, как правило, формируется одна эндоспора. (Описана анаэробная бактерия, образующая в клетке до 3-5 эндоспор).

Первым шагом к спорообразованию является изменение морфологии ядерного вещества вегетативной клетки, образующего тяж вдоль длинной оси спорулирующей клетки ( рис. 23 ). Приблизительно одна треть тяжа затем отделяется и переходит в формирующуюся спору. У некоторых видов ядерный тяж образуется только на одном полюсе клетки, в его формировании участвует не весь генетический материал вегетативной клетки, и впоследствии ядерный тяж целиком переходит в формирующуюся спору. Биологический смысл формирования ядерного тяжа до сих пор остается невыясненным.

Формирование споры начинается с того, что у одного из полюсов клетки происходит уплотнение цитоплазмы , которая вместе с генетическим материалом, представляющим собой одну или несколько полностью реплицированных хромосом, обособляется от остального клеточного содержимого с помощью перегородки. Последняя формируется впячиванием внутрь клетки ЦПМ . Мембрана нарастает от периферии к центру, где срастается, что приводит к образованию споровой перегородки. Эта стадия формирования споры напоминает клеточное деление путем образования поперечной перегородки (см. рис. 20 , А). Следующий этап формирования споры - "обрастание" отсеченного участка клеточной цитоплазмы с ядерным материалом мембраной вегетативной клетки, конечным результатом которого является образование проспоры - структуры, расположенной внутри материнской клетки и полностью отделенной от нее двумя элементарными мембранами: наружной и внутренней по отношению к проспоре.

Описанные выше этапы формирования споры (вплоть до образования проспоры) обратимы. Оказалось, что если к спорулирующей культуре добавить антибиотик хлорамфеникол (ингибитор белкового синтеза и, следовательно, ингибитор синтеза мембранных белков), то можно остановить "обрастание" клеточной мембраной отсеченного септой участка цитоплазмы, и процесс спорообразования превратится в процесс клеточного деления. (Между двумя мембранами септы откладывается материал клеточной стенки.) После образования проспоры дальнейшие этапы спорообразования уже необратимы.

Между наружным и внутренним мембранными слоями проспоры начинается формирование кортикального слоя (кортекса) . Затем поверх наружной мембраны проспоры синтезируются споровые покровы, состоящие из нескольких слоев, число, толщина и строение которых различны у разных видов спорообразующих бактерий. В формировании слоев споровых покровов принимает участие как наружная мембрана споры, так и протопласт материнской клетки.

У многих бактерий поверх покровов споры формируется еще одна структура - экзоспориум , строение которого различно в зависимости от вида бактерий. Часто экзоспориум многослойный, с характерной для каждого слоя тонкой структурой.

Все слои, окружающие протопласт эндоспоры, находятся внутри материнской клетки. На их долю приходится примерно половина сухого вещества споры.

После сформирования споры происходит разрушение (лизис) "материнской" клеточной стенки и спора выходит в среду.

Спорообразование сопровождается активным синтезом белка. Белки эндоспор в отличие от белков вегетативных клеток богаты цистеином и гидрофобными аминокислотами, с чем связывают устойчивость спор к действию неблагоприятных факторов. Содержание ДНК в споре несколько ниже, чем в исходной вегетативной клетке, поскольку в спору переходит лишь часть генетического материала материнской клетки. Генетический материал поступает в спору в виде полностью реплицированных молекул ДНК. Споры некоторых видов содержат по 2 или 3 копии хромосомы. Содержание РНК в спорах ниже, чем в вегетативных клетках, и РНК в значительной степени при спорообразовании синтезируется заново.

Одним из характерных процессов, сопровождающих образование эндоспор, является накопление в них дипиколиновой кислоты и ионов кальция в эквимолярных количествах. Эти соединения образуют комплекс, локализованный в сердцевине споры. Помимо Са2+ в эндоспорах обнаружено повышенное содержание других катионов (Mg2+, Mn2+, К+), с которыми связывают пребывание спор в состоянии покоя и их термоустойчивость.

Существенные отличия эндоспор от вегетативных клеток выявляются при изучении химического состава отдельных споровых структур. Экзоспориум состоит из липидов и белков и, вероятно, выполняет функцию дополнительного барьера, защищающего спору от внешних воздействий, а также регулирующего проникновение в нее различных веществ. Однако никаких данных, подтверждающих эти предположения, пока нет. Механическое удаление экзоспориума не приводит к какому-либо повреждению спор. Они обнаруживают такую же способность к прорастанию, как и споры с неудаленным экзоспориумом.

Споровые покровы в основном состоят из белков и в небольшом количестве из липидов и гликолипидов. Белки покровов обладают высокой устойчивостью к неблагоприятным условиям и обеспечивают спорам защиту от действия литических ферментов, других повреждающих факторов, а также предохраняют спору от преждевременного прорастания. Оказалось, что споры мутантов, лишенные покровов, прорастают сразу же после выхода из материнской клетки, даже если условия для последующего роста неблагоприятны.

Кортекс построен в основном из молекул особого типа пептидогликана . При прорастании споры из части кортекса, прилегающей к внутренней споровой мембране, формируется клеточная стенка вегетативной клетки.

В отличие от эндоспор, образующихся внутри материнской клетки и окруженных двумя элементарными мембранами, экзоспоры бактерий из рода Methylosinus и Rhodomicrobium формируются в результате отпочкования от одного из полюсов материнской клетки. Образование экзоспор сопровождается уплотнением и утолщением клеточной стенки. У экзоспор отсутствуют дипиколиновая кислота и характерные для эндоспор структуры (кортекс, экзоспориум).