Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛИНЕЙКА В ЗАДАЧАХ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.8 Mб
Скачать

Неоднородные системы

СЛАУ называется неоднородной, если столбец свободных членов отличен от нуля. Система совместна, если ранг основной матрицы системы равен рангу расширенной матрицы, т.е. . Общее решение представимо в виде: , где - частное решение неоднородной системы, а - общее решение соответствующей однородной системы.

Задача 3. Найти общее решение системы уравнений .

Решение. Расширенную матрицу системы с помощью линейных преобразований строк приведем к ступенчато-треугольному виду.

.

Система совместна, так как . ФСР однородной СЛАУ

, частное решение неоднородной СЛАУ .

Общее решение можно записать в виде: .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Найти общее решение систем уравнений.

3.1. . 3.2. .

3.3. . 3.4. .

Задача 4. Решить систему при всех значениях параметра .

Решение. Расширенную матрицу системы с помощью линейных преобразований строк приведем к ступенчато-треугольному виду.

.

При . Общее решение имеет вид .

Если , то расширенная матрица системы приводится к виду

.

При , т.е. система несовместна.

При единственное решение .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Решить систему при всех значениях параметра .

4.1. . 4.2. .

Задача 5. Найти точку пересечения прямых и , если

.

Решение. Точка пересечения прямых представима в виде и . Таким образом, для того, чтобы найти точку , надо решить линейную относительно систему .

Система имеет единственное решение, если векторы и не коллинеарны и вектор , т.е. ранги основной и расширенной матриц системы равны 2. Если ранг расширенной матрицы равен 3, то прямые скрещиваются, если ранг основной матрицы 1, а расширенной 2, прямые параллельны, и если оба ранга равны 1, прямые совпадают.

Для нашей задачи система принимает вид: . В результате элементарных преобразований получаем: . Таким образом, прямые пересекаются в одной точке с координатами .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Найти точку пересечения прямых и .

5.1. . 5.2. . 5.3. .

5.4. . 5.5. .

Ответы

1.1. . 1.2. . 1.3. . 1.4. .

В задачах 2.1.-2.5. в ответах приводится одна из ФСР.

2.1. . 2.2. . 2.3. .

2.4. . 2.5. .

3.1. . 3.2. . 3.3. . 3.4. .

4.1. При , при общее решение , при система несовместна. 4.2. При , при система несовместна.

5.1. . 5.2. . 5.3. Прямые совпадают. 5.4. Нет решения. Прямые скрещиваются. 5.5. Нет решения. Прямые параллельны.

Тема 6. Евклидовы пространства

Функция , называется скалярным произведением векторов и , если выполнены условия:

1. (симметрия).

2. (линейность относительно сложения).

3. (линейность относительно умножения на число).

4. , если (положительная определенность).

Линейное пространство L, в котором определено скалярное произведение, называется евклидовым пространством.

Длина вектора определяется равенством , угол  между векторами и вычисляется по формуле .

Задача 1. Используя свойства скалярного произведения, доказать теорему о диагоналях параллелограмма.

Решение. Докажем, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Пусть - стороны, а - диагонали параллелограмма. Тогда .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Доказать следующие теоремы:

1.1. Теорему Пифагора. 1.2. Теорему косинусов. 1.3. Теорему о диагоналях ромба. 1.4. Теорему о трех перпендикулярах.

Задача 2. В тетраэдре (правильном четырехграннике) вычислить угол между ребром и гранью.

Решение. Выберем базис, состоящий из векторов длины 1, выходящих из одной вершины тетраэдра и направленных по его ребрам. Так как углы между ребрами тетраэдра равны , то скалярные произведения базисных векторов следующие: , .

Угол между ребром и гранью, содержащей ребра и , равен углу между векторами и . Так как , , , то .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Вычислить в тетраэдре следующие углы.

2.1. Угол между высотой и ребром. 2.2. Угол между высотой и боковой гранью. 2.3. Угол между гранями. 2.4. Угол между высотами граней, опущенными из одной вершины.

Скалярное произведение в произвольном базисе выражается через координаты следующим образом: .

Векторы и называются ортогональными, если . Ортогональность геометрических векторов означает их перпендикулярность.

Базис, состоящий из попарно ортогональных векторов, называется ортогональным. Базис называется ортонормированным (ОНБ), если он состоит из ортогональных векторов длины 1. В ОНБ скалярное произведение принимает наиболее простой вид: .

Ниже, по умолчанию, векторы заданы координатами в ОНБ.

Задача 3. Найти угол между векторами и .

Решение. , , т.е. .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Найти угол между векторами и .

3.1. . 3.2. ; .

3.3. . 3.4. .

Задача 4. Дополнить до ортогонального базиса систему векторов

Решение. Векторы , , дополняющие и до ортогонального базиса, удовлетворяют условиям: .

Для решения этой системы уравнений преобразуем ее матрицу.

. Выберем .

Вектор должен удовлетворять условиям: .

Эта система уравнений эквивалентна системе с матрицей

. Вектор .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Дополнить до ортогонального базиса систему векторов.

4.1. . 4.2.

4.3. . 4.4. .

Найти ОНБ пространства L, заданного уравнением.

5.1. . 5.2. .

5.3. . 5.4. .

Указание. Сначала, как в задачах 4, ищется ортогональный базис пространства . Для построения ОНБ каждый вектор полученного базиса нормируется, т.е. делится на свою длину.

Множество всех векторов из E, ортогональных к подпространству L, образует подпространство, которое называется ортогональным дополнением к L. Отметим, что , т.е. xЕ существует единственное разложение , где , а . Слагаемое называется проекцией вектора на L, а  перпендикуляром, опущенным из на L или ортогональной составляющей вектора .

Если является линейной оболочкой системы векторов , то задается системой уравнений , а если задано системой уравнений , то .

Задача 6. Найти проекцию и ортогональную составляющую вектора на подпространство , если , .

Решение. В разложении проекция , т.е. имеет вид . Следовательно .

Умножив последовательно это равенство скалярно на и , получим, учитывая ортогональность подпространству , следующую систему уравнений .

Для заданных векторов эта система принимает вид .

Подставив решения системы в разложение , получим , а .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Найти проекцию и ортогональную составляющую вектора на подпространство .

6.1. , если .

6.2. , если , .

6.3. , задано системой: .

6.4. , задано системой: .

Указание. В задачах 6.3., 6.4. линейной оболочкой является не , а , поэтому сначала ищется , а затем .

Замена вектора перпендикуляром, опущенным на подпространство, лежит в основе процесса ортогонализации. Этот процесс позволяет из произвольной системы векторов получить ортогональную систему , такую, что .

Система строится так: , где  перпендикуляр, опущенный из вектора на .

Для линейно независимой системы все , поэтому можно найти по формуле .

Задача 7. Применить процесс ортогонализации к системе векторов

Решение. Положим . Так как , то . Вычислим , , . Следовательно .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Применить процесс ортогонализации к системе векторов.

7.1.

7.2.

7.3. , если .

7.4. , если .

Определителем Грама системы векторов называется определитель .

Основные свойства определителя Грама:

1. Если векторы линейно зависимы, то .

2. , где − перпендикуляр, опущенный из вектора на подпространство .

3. , где система получена в результате ортогонализации системы векторов .

Задача 8. Найти расстояние между прямыми и и указать ближайшие точки, если .

Решение. Расстояние между прямыми – это минимум расстояний между произвольными точками указанных прямых. При параллельном переносе расстояние между точками не меняется, поэтому . Задача свелась к определению расстояния от вектора до линейной оболочки векторов и . Расстояние определяется из равенства .

Для заданных прямых , , .

Следовательно .

Для решения этой задачи можно также найти разложение , как в задаче 6, и вычислить .

Ближайшие точки и соответствуют значениям параметров , удовлетворяющих условию . Параметры могут быть найдены из системы уравнений . Для заданных прямых получаем: , и следовательно, ближайшие точки имеют координаты и .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Найти расстояние между прямыми и , указать ближайшие точки.

8.1. . 8.2. .

Задача 9(1). Определить число вершин -мерного куба.

Решение. В базисе, состоящем из векторов длины 1, направленных по ребрам куба, выходящим из одной вершины, координаты всех вершин равны 0 или 1. Следовательно, число вершин равно .

Задача 9(2). В -мерном кубе определить число диагоналей, ортогональных данной.

Решение. Каждой диагонали соответствуют два противоположных вектора, все координаты которых равны 1 или (–1). Диагональ, ортогональная вектору, у которого все координаты равны 1, имеет одинаковое число положительных и отрицательных координат. Следовательно, при нечетном , ортогональных диагоналей нет. При число диагоналей, ортогональных данной диагонали, равно .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

В n-мерном кубе с ребром длины l определить:

9.1. Число ребер. 9.2. Число диагоналей. 9.3. Длину диагонали.

9.4. Проекцию ребра на диагональ. 9.5. Угол между диагональю и ребром. 9.6. Радиус сферы, описанной около куба. При каких ?

Ответы

2.1. . 2.2. . 2.3. . 2.4. .

3.1. , т.е. . 3.2. . 3.3. . 3.4. , т.е. .

В задачах 4.1.-4.4. в ответах приводится один из возможных вариантов дополнения.

4.1. . 4.2. .

4.3. .

4.4. .

В задачах 5.1.-5.3. в ответах приводится матрица, столбцы которой состоят из координат базисных векторов. Базис может быть выбран неоднозначно.

5.1. . 5.2. .

5.3. . 5.4. .

6.1. , .

6.2. , .

6.3. , .

6.4. , .

7.1.

7.2.

7.3. .

7.4. .

8.1. , ближайшие точки и . 8.2. , ближайшие точки и .

9.1. . 9.2. . 9.3. . 9.4. . 9.5. . 9.6.