Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КЗиМУ-051000.62 Математика(МСФ).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.79 Mб
Скачать

4. Дифференциальное исчисление функций нескольких переменных

231. Дана функция .

Показать, что .

232. Дана функция .

Показать, что .

233. Дана функция .

Показать, что .

234. Дана функция .

Показать, что .

235. Дана функция .

Показать, что .

236. Дана функция . Показать, что .

237. Дана функция .

Показать, что .

238. Дана функция .

Показать, что .

239. Дана функция .

Показать, что .

240. Дана функция .

Показать, что .

251-260. Найти наименьшее и наибольшее значения функции z=f(x, y) в замкнутой области D, заданной системой неравенств. Сделать чертеж.

251. z=x2+y2-9xy+27; 0≤x≤3, 0≤y≤3.

252. z=x2+2y2+1; x≥0, y≥0, x+y≤3.

253. z=3-2x2 -xy-y2; x≤1, ух, у≥0.

254. z=x2+3y2+x-y; x≥1, y≥-1, х+y≤1.

255. z=x2+2xy +2y2; -1≤x≤1, 0≤y≤2.

256. z=5x2-3xy +y2+4; x≥-1, y≥-1, х+y≤1.

257. z=10+2xy -x2; 0≤y≤4- x2.

258. z=x2+2xy -y2+4 x; x≤0, y≤0, х+y+2≥0.

259. z=x2 +xy-2; 4 x2-4≤y≤0.

260. z=x2+xy; -1≤x≤1, 0≤y≤3.

261-270. Дана функция z=z(x, y), точка А(х0, у0) и вектор . Найти: 1) в точке A; 2) производную в точке A по направлению вектора .

261. .

262. .

263. .

264. .

265. .

266. .

267. .

268. .

269. .

270. .

5. Неопределённый и определённый интегралы

281-290. Найти неопределенные интегралы. В двух примерах (пункты а и б) проверить результаты дифференцированием.

281. а) ; б) ;

в) ; г) .

282. а) ; б) ;

в) ; г) .

283. а) ; б) ;

в) ; г) .

284. а) ; б) ;

в) ; г) .

285. а) ; б) ;

в) ; г) .

286. а) ; б) ;

в) ; г) .

287. а) ; б) ;

в) ; г) .

288. а) ; б) ;

в) ; г) .

289. а) ; б) ;

в) ; г) .

290. а) ; б) ;

в) ; г) .

301-310. Вычислить несобственный интеграл или доказать его расходимость.

301. . 302. .

303. . 304. .

305. . 306. .

307. . 308. .

309. . 310. .

6. Дифференциальные уравнения

321-330. Найти общее решение дифференциального уравнения.

321. . 322. .

323. . 324. .

325. . 326. .

327. . 328. .

329. . 330. .

341-350. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям , .

341. ; , .

342. ; , .

343. ; , .

344. ; , .

345. ; , .

346. ; , .

347. ; , .

348. ; , .

349. ; , .

350. ; , .

7. Двойные и криволинейные интегралы

351-360. Вычислить двойные интегралы по области D.

351. , где D – область, ограниченная линиям

352. , где D – область, ограниченная линиями

353. , где D – область, ограниченная линиями

354. , где D – область, ограниченная линиями

355. где D – область, ограниченная линиями

356. , где D – область, ограниченная линиями

357. где D – область, ограниченная линиями

358. где D – область, ограниченная линиями

359. , где D – область, ограниченная линиями

360. где D – область, ограниченная линиями

.

361 – 370. Перейдя к полярным координатам, вычислить площадь фигуры, ограниченной областью D.

361. Область D ограниченна линиями: (І четв.)

362. Область D ограниченна линиями: .(І четв.)

363. Область D ограниченна линиями: . (І четв.)

364. Область D ограниченна линиями:

365. Область D ограниченна лемнискатой: (І четв.)

366. Область D ограниченна линиями:

367. Область D ограниченна линиями:

368. Область D ограниченна линиями:

369. Область D ограниченна линиями:

370. Область D ограниченна лемнискатой:

371 – 380. Вычислить криволинейные интегралы

371. где L – контур треугольника, образованного осями координат и прямой в положительном направлении, т.е. против движения часовой стрелки.

372. где L – дуга параболы от точки О (0;0) до точки

А(2;4).

373. где L – контур прямоугольника, образованного прямыми

в положительном направлении (против часовой стрелки).

374. вдоль кривой .

375. вдоль кривой от точки О (0;0) до точки А(1;1).

376. вдоль отточки О (0;0) до точки А(1;1).

377. , где L – четверть окружности 0 , против часовой стрелки.

378. , где L – первая арка циклоиды 0.

379. вдоль линии от точки О (0;0) до точки А(1;1).

380. вдоль отрезка ОА, О (0;0), .