
- •1.Основные задачи и понятия тмм. Машина, механизм, кп, кц, их классификация
- •1)Энергетические 2) рабочие 3) информационные
- •2.Структура механизмов. Деталь, звено, кинематическая пара, кинематическая цепь, их классификация.
- •3.Классификация кинематических пар по характеру соприкосновения
- •4 Классификация кинематических пар по числу условий связей
- •5.Структурная формула кинематической цепи общего вида ( Сомова-Малышева)
- •6.Структурная формула плоских механизмов (Чебышева). Методика определения степени подвижности плоских механизмов
- •7.Классификация механизмов по Ассуру. Группы Ассура, их классификация. Основной принцип образования плоских механизмов
- •8. Кинематический анализ(ка) механизмов, его основные задачи и методы. Параметры, определяемые в ходе ка
- •9. Планы положений механизма.Кинематические диаграммы. Сущность метода графического дифференцирования.
- •10.Применение планов скоростей при выполнении кинем. Анализа плоского шарнирно- рычажкового механизма……
- •2.1.1. Определение скоростей
- •12. Динамический анализ механизмов, его основные задачи. Классификация сил, действующих на звенья механизма.
- •Обратная
- •13. Уравновешивающая сила. Формулы, применяемые для определения величины уравновешивающей силы, уравновешивающего момента, потребной мощности двигателя.
- •14. Основные режимы работы механизма.
- •15. Неравномерность хода механизмов в установившемся движении. Коэффициент неравномерности хода машины
- •16) Приведённая масса. Приведённый момент инерции массы. Приведение сил и моментов сил к звену приведения. Причина широкого применения метода приведения сил и массы в динамике машин
- •17. Определение величины момента инерции маховика, обеспечивающий необходимый коэффициент неравномерности хода машины. Методика и вывод основных формул.
- •18)Уравнение движения машины, его использование в динамическом анализе.
- •19Методика построении и определения диаграмм приведенных моментов и работ сил полезного сопротивления и движ. Сил.Сущность метода графич. Интегр.
- •20. Применение принципа д’Аламбера в динамике машин. Главный вектор и главный момент сил инерции звена при различных случаях его движения
- •Структурный анализ механизма:
- •27. Методика построения эвольвентного профиля зубьев. Докажите, что при эвольвентном профиле зубьев мгновенное передаточное отношение остаётся постоянным.
- •28) Геометрические элементы зубчатых колёс. Шаг зацепления, модуль зацепления.
27. Методика построения эвольвентного профиля зубьев. Докажите, что при эвольвентном профиле зубьев мгновенное передаточное отношение остаётся постоянным.
Эвольвентное зацепление позволяет передавать движение с постоянным передаточным отношением. Эвольвентное зацепление — зубчатое зацепление, в котором профили зубьев очерчены по эвольвенте окружности
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Условие постоянства передаточного отношения
i=ω1/ω2=ρ2/ρ1=const.