
- •1. Основные понятия, термины и определения 8
- •2. Количественные показатели аппаратурной надежности асоиу 27
- •3. Математические модели надежности аппаратуры асоиу 41
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования 49
- •5. Расчет надежности ремонтируемых систем 63
- •6. Основы моделирования и расчета надежности программных средств 73
- •7. Основы эргономики асоиу 87
- •8. Основы организации испытаний асоиу на надежность 107
- •9. Основные принципы обеспечения качества промышленной продукции 117
- •Введение
- •1. Основные понятия, термины и определения
- •1.1. Система и ее элементы
- •1.2. Основные функции асоиу
- •1.3. Понятия надежности и отказа системы (элемента)
- •1.4. Основные определения в области качества и надежности программного обеспечения (по) асоиу
- •1.5. Основные определения в области надежности подсистемы человек-оператор асоиу
- •1.6. Факторы, влияющие на надежность асоиу
- •1.6.1. Контроль технического состояния асоиу в процессе эксплуатации
- •1.6.2. Влияние внешних воздействующих факторов при эксплуатации асоиу
- •1.7. Проблема стандартизации в области надежности и качества
- •2. Количественные показатели аппаратурной надежности асоиу
- •2.1. Основные показатели надежности невосстанавливаемых объектов
- •2.1.1. Вероятность безотказной работы
- •2.1.2. Вероятность отказа
- •2.1.3. Средняя наработка до отказа
- •2.1.4. Интенсивность отказов
- •2.2. Показатели надежности восстанавливаемых объектов
- •2.2.1. Показатели безотказности восстанавливаемых объектов
- •2.2.1.1. Параметр потока отказов
- •2.2.1.2. Средняя наработка на отказ объекта
- •2.2.2. Показатели ремонтопригодности
- •2.2.2.1. Вероятность восстановления
- •2.2.2.2. Среднее время восстановления
- •2.2.2.3. Интенсивность восстановления
- •2.2.3. Показатели долговечности
- •Комплексные показатели надежности
- •2.3.1. Коэффициент готовности
- •2.3.2. Коэффициент оперативной готовности
- •2.3.3. Коэффициент технического использования
- •Коэффициент сохранения эффективности
- •3. Математические модели надежности аппаратуры асоиу
- •3.1. Модели потоков событий
- •3.1.1. Простейший поток отказов
- •3.1.2. Потоки Эрланга
- •3.2. Законы распределения дискретных случайных величин
- •3.2.1. Биномиальный закон распределения числа появления события а в m независимых испытаниях
- •3.2.2. Пуассоновское распределение появления n событий за время t
- •3.3. Законы распределения непрерывных случайных величин
- •3.3.1. Экспоненциальное распределение
- •3.3.2. Нормальное распределение
- •3.3.3. Гамма-распределение
- •3.4. Модели случайных процессов
- •3.3.1. Марковские процессы
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования
- •4.1. Составление логических схем
- •4.2. Расчет надежности нерезервированной невосстанавливаемой системы
- •Учет влияния режимов работы элементов на надежность
- •4.4. Расчет надежности невосстанавливаемых резервированных систем
- •4.4.1. Резервирование с целой кратностью с постоянно включенным резервом или нагруженное резервирование замещением с абсолютно надежными переключателями
- •4.4.1.1. Общее резервирование
- •4.4.1.2. Раздельное резервирование
- •4.4.1.3. Общее резервирование с дробной кратностью
- •4.4.2. Резервирование замещением ненагруженное и облегченное с абсолютно надёжными переключателями
- •4.4.2.1.Общее ненагруженное резервирование замещением
- •4.4.2.2. Облегченное резервирование замещением
- •В случае показательного распределения наработки до отказа
- •4.4.3. Резервирование с учетом надежности переключателей
- •4.4.4. Скользящее резервирование
- •5. Расчет надежности ремонтируемых систем
- •5.1. Общая характеристика методов расчета надежности ремонтируемых систем
- •Вычисление функций готовности и простоя нерезервированных систем
- •5.3. Особенности расчета резервированных систем
- •5.3.1. Ненагруженное резервирование с восстановлением
- •5.3.2. Нагруженное резервирование замещением
- •Расчет надежности восстанавливаемых систем, перерывы в работе которых в процессе эксплуатации недопустимы
- •Примеры решения типовых задач
- •Основы моделирования и расчета надежности программных средств
- •6.1. Модель анализа надежности программных средств
- •6.2. Статистика ошибок по асоиу
- •6.3. Количественные характеристики надежности по асоиу
- •6.4. Модели надежности программного обеспечения
- •6.4.1. О возможности построения априорных мнп
- •6.4.2. Непрерывные эмпирические модели надежности по (нэмп)
- •6.4.3. Дискретные эмпирические модели надежности по (дэмп)
- •6.5. Способы обеспечения и повышения надежности по
- •6.5.1. Основы организации тестирования программ
- •6.5.1.1. Особенности тестирования « белого ящика»
- •6.5.1.2. Особенности функционального тестирования по ( методы тестирования «черного ящика»)
- •6.5.1.3. Организация процесса тестирования программного обеспечения
- •6.5.2. Способы оперативного повышения надежности по
- •Основы эргономики асоиу
- •7.1. Основные понятия и определения
- •7.2. Классификация эргономических методов исследования
- •7.3. Характеристика деятельности человека-оператора технических систем
- •7.4. Влияние человека - оператора на надежность асоиу
- •Показатели безошибочности человека-оператора
- •7.4.2. Способы борьбы с ошибками оператора
- •7.5. Проектирование дружественных пользователю вычислительных систем
- •7.5.1. Эргономика средств ввода информации
- •7.5.2. Работа с дисплеями и требования к ним
- •7.5.3. Организация компьютеризованных рабочих мест
- •7.6. Организация диалога человека и эвм
- •8. Основы организации испытаний асоиу на надежность
- •8.1. Виды испытаний на надежность
- •Принципиальные особенности организации испытаний на надежность асоиу
- •Основы организации определительных испытаний на надежность
- •8.3.1. Точечные оценки показателей безотказности и ремонтопригодности
- •8.3.2. Оценка показателей надежности доверительным интервалом
- •8.3.2.1. Определение доверительного интервала для средней наработки на отказ
- •8.3.2.2. Определение доверительного интервала для вероятности безотказной работы по числу обнаруженных при испытаниях отказов
- •8.4. Основы организации контрольных испытаний
- •9. Основные принципы обеспечения качества промышленной продукции
- •9.1. Современная концепция обеспечения качества продукции
- •Наименование детали
- •Два подхода к контролю за качеством продукции
- •Заключение
3.1. Модели потоков событий
3.1.1. Простейший поток отказов
Существует множество математических моделей потоков событий. Наиболее часто при решении задач надежности восстанавливаемой аппаратуры используют простейший поток отказов [3.1, 3.2, 3.3 , 3.4].
Простейший поток отказов удовлетворяет одновременно трем условиям: стационарности, ординарности, отсутствию последействия.
Стационарность случайного потока событий (времени возникновения отказов) означает, что на любом промежутке времени Δti вероятность возникновения n отказов зависит только от значения n и величины промежутка Δti, и не зависит от сдвига по оси времени. Следовательно, при Δti = Δti+1 = Δti+m вероятность появления n отказов по всем интервалам одинакова.
Pn (Δti)= Pn(Δti+1)= … = Pn(Δti+m). (3.1)
Условие стационарности означает, что параметр потока отказов
ω(t) = λ = const.
Ординарность потока означает невозможность появления в один и тот же момент времени более одного отказа, то есть
lim Pn(Δt) = 0 (для n >1) . (3.2)
Δt→0
Отсутствие последействия означает, что вероятность наступления n отказов в течение промежутка Δti не зависит от того, сколько было отказов, и как они распределялись до этого промежутка времени. Следовательно, факт отказа любого элемента в системе не приведет к изменению характеристик (работоспособности) других элементов системы, если даже система и отказала из-за какого-то элемента.
Если отказы элементов происходят мгновенно, отказ любого элемента приводит к отказу всей системы, старение элементов отсутствует (λ = const), то поток отказов в системе можно считать простейшим.
Свойства простейшего потока
1. Случайные события, образующие простейший поток, распределены по закону Пуассона [3.1, 3.2]:
,
при n
0, (3.3)
где Pn(t) - вероятность возникновения в течение времени t ровно n отказов, λ – параметр распределения, совпадающий с параметром потока событий.
2. Если в выражении
(3.3) принять n
= 0, то получим
P(t)
- вероятность безотказной работы
объекта за время t
при интенсивности отказов λ = const,
которая определяется так:
.
Таким образом, при пуассоновском потоке отказов промежуток времени между отказами подчиняется экспоненциальному распределению.
3. Среднее число отказов на отрезке времени [0, t] - W(t) = λt.
3.1.2. Потоки Эрланга
Нарушение условий стационарности или наличие последействия приводит к непростейшим потокам событий (отказов). Например, к таким потокам относятся потоки Эрланга к -го порядка, которые возникают при «просеивании» простейшего потока. Поток Эрланга к -го порядка - поток, получающийся в результате сохранения каждого к-го события (отказа) в простейшем потоке. При к = 1 поток Эрланга – простейший.
Дифференциальный закон распределения появления события в потоке Эрланга имеет вид:
,
(3.4)
где λ – интенсивность простейшего потока отказов.
Выражение (3.4) отвечает гамма-расределению ( см. п. 3.3.3).
Интенсивность потока Эрланга
.
(3.5)
Математическое ожидание времени между появлениями событий:
.
(3.6)
Дисперсия времени между событиями:
.
(3.7)
Можно использовать модели - потоки Эрланга к-го порядка при рассмотрении потоков отказов в резервированной системе ( см. раздел 4) с кратностью резервирования k - 1.