Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПАХТ лекции 2 часть.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
20.29 Mб
Скачать

157

Н.Х. Зиннатуллин

Массообменные процессы и аппараты

Конспекты лекции

Казань, 2012

1 МАССООБМЕН.

1.1 Фазовые равновесия.

Основная задача химико-технологического процесса состоит в направленном изменении макроскопических свойств участвующих в процессе веществ: состава, агрегатного состояния, давления P и температуры Т. При этом происходит перенос субстанций: массы, энергии, импульса. Предельное состояние системы – подвижное равновесие, при котором не происходит изменений макроскопических свойств веществ. Равновесным называют такое состояние системы, при котором перенос субстанций отсутствует.

В изолированной системе условия равновесия определяется только внутренними условиями и записываются так:

, , (1.1)

Здесь, – химический потенциал -того компонента.

Условия (1.1) называют условиями механического, термического и химического равновесия.

Все самопроизвольные процессы сопровождаются увеличением энтропии системы. В состоянии равновесия энтропия достигает максимального значения:

(1.2)

Таким образом, условия равновесия системы определяются уравнениями (1.1) и (1.2).

Для открытой системы равновесное состояние может быть устойчивым лишь при её равновесии с окружающей средой. Движущая сила процессов переноса возникает вследствие отклонения от равновесия в самой системе или в окружающей среде. Все технологические схемы является открытыми системами.

Химический потенциал зависит не только от концентрации данного компонента, но и от вида и концентрации других компонентов системы.

Химический потенциал компонента непосредственно изменить невозможно. Для его расчета используют соотношения между термодинамическими функциями, которые, в свою очередь, зависят от состава смеси. Поэтому в инженерных расчетах для определения движущей силы процесса используют разность концентраций.

Возможное существование данной фазы в равновесии с другими определяется по закону равновесия фаз Гиббса:

(1.3)

Здесь С – число степеней свободы (Р,Т и концентрация) – минимальное число параметров, которые можно изменять независимо друг от друга, не нарушая равновесие данной системы; – число фаз системы; – число независимых компонентов системы; – число внешних факторов, влияющих на положение равновесия в данной системе.

Для процессов переноса массы =2 ( давление и температура).Правило фаз Гиббса определяет возможность существования фаз, но не указывает на количественных зависимостей переноса вещества между фазами.

Обычно зависимости между параметрами строят в плоских координатах. Такие диаграммы называются фазовыми.

Для бинарной смеси строят следующие фазовые диаграммы: при Т=const, Т– при =const, y(x)– при T=const, y-x при =const. Здесь

- концентрация, y и x – концентрация вещества в фазах.

Рис.1.1. Схема массообменного процесса.

Рассмотрим пример поглощения аммиака чистой водой из аммиачно-воздушной смеси: у - концентрация аммиака в воздухе, х - концентрация аммиака в воде. Аммиак - распределяемый компонент. С началом растворения аммиака в воде начнётся переход части его молекул в обратном направлении со скоростью, пропорциональной концентрации аммиака в воде. С течением времени скорость переноса аммиака в воду будет снижаться, а скорость обратного переноса возрастать. Такой двусторонний перенос будет продолжаться до установления динамического равновесия – когда переходы в обоих направлениях будут равны.

При равновесии достигается определённая зависимость между равновесными концентрациями распределяемого вещества в фазах при Т и = const:

, (1.4)

где у* - равновесная концентрация аммиака в воздухе, при концентрации аммиака в воде х.

Графическое изображение зависимости (1.4) и есть линия равновесия. Эту зависимость представим в виде:

у* = mx (1.5),

где m – коэффициент распределения.

Для двухкомпонентной двухфазной системы коэффициент распределения будет зависеть от двух переменных m=f(T,x)=f( ,x)=f( ,T).

Следовательно, необходимо иметь набор экспериментальных данных по равновесию по всей области изменения двух параметров. При увеличении числа компонентов в системе ситуация ещё более усложняется. При отсутствии таких экспериментальных данных для определения коэффициента распределения можно использовать аналитические зависимости. Такие зависимости рассмотрены у А.И. Разинова и В.Б. Когана. Конкретный вид равновесия (1.5) различен для разных процессов массообмена. Например, для абсорбции равновесие описывается законом Генри, для ректификации – законом Рауля и т.д. Зная линию равновесия и рабочую линию для конкретного процесса можно определить направление и движущую силу массообмена в любой точке аппарата.

1.2 Материальный баланс.

В стационарных условиях закон сохранения массы для всего аппарата в виде материального баланса может быть представлен:

(1.6)

, – соответственно, расходы жидкой и газовой фаз; х, у – концентрация распределяемого компонента в фазах; н – начальное, к – конечное состояние.

Материальный баланс по распределённому компоненту при отсутствии химических реакций имеет вид:

(1.7)

В случае постоянства расходов и уравнение (1.7) упрощается:

(1.8)

Для элементарного участка аппарата имеем:

– dy= dx (1.9)

Знак минус свидетельствует о противоположном изменении концентрации распределяемого компонента в фазах, если в одной фазе увеличивается, то в другой – наоборот, уменьшается.

1.3 Уравнения рабочих и равновесных линий.

Предположим, что перенос распределяемого компонента происходит из фазы в фазу .

Рис.1.2. Схема массообменного процесса в противоточном аппарате.

Из уравнения материального баланса можно получить уравнение рабочей линии.

Уравнение материального баланса для нижней части аппарата до сечения А-А:

(1.10)

поступает расходуется

Находим из (1.10) у:

В случае постоянства расходов и получим:

(1.11)

Полученное уравнение (1.11) является уравнением рабочей линии и представляет собой уравнение прямой линии.

Аналогичным образом может быть получено уравнение рабочей линии для прямоточного аппарата.

Рис.1.3. Схема массообменного процесса в прямоточном аппарате

(1.12)

поступает расходуется

Находим из (1.12) у: , если расходы не меняются, т.е. и =const, то:

(1.13)

а б

Рис.1.4. Рабочие линии: а – противоток, б – прямоток.

Запишем уравнение равновесной линии, связывающее рабочую концентрацию распределяемого компонента в одной из фаз с его равновесной концентрацией в другой фазе. Под равновесной концентрацией в произвольном сечении аппарата понимают концентрацию компонента в фазе, находящейся в равновесии с другой, состав которой определяется рабочей концентрацией. Уравнение равновесной линии:

у*=mх (1.14)

Здесь у* - равновесная концентрация в фазе G, х – рабочая концентрация в фазе L,

m – коэффициент распределения.

Рис.1.5. Рабочие (1 и 2) и равновесная (3) линии.

Рабочая концентрация распределяемого компонента в фазе G превышает равновесную. Поэтому распределяемый компонент будет переходить из G фазы во вторую фазу L, до равновесия т.к. .