
- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
Задание 2.6
Имеется выборка, состоящая из Т=6 пар наблюдений (хt, уt): (2,0; 0,0); (2,5; 0,5); (3,0; 1,0); (4,0; 1,0); (4,5; 0,5) и (5,0; 0,0), которая характеризует особый случай представления данных.
Требуется:
1. Нарисовать диаграмму рассеяния и выяснить, о каком особом случае идет речь.
2. Построить регрессионное уравнение для этого случая и прокомментировать его.
3. Рассчитать коэффициент детерминации и проинтерпретировать его.
4. Определить, что изменится, если принять, что первые три и последние три пары значений относятся к разным генеральным совокупностям.
Задание 2.7
Рассмотрим линейную однофакторную регрессионную модель, в которой экзогенные переменные принимают только два значения 0 и 1, т. е. являются индикаторами.
Требуется:
1. Определить общий вид уравнения регрессии.
2. Для 30-летних коммерсантов с высшим образованием объяснить уровень месячного дохода с помощью переменной “пол”, если для 6 случайно выбранных женщин месячные доходы составляют 3750, 3910, 4230, 3890, 4090, 4130, а для 6 случайно выбранных мужчин – 4850, 3950, 4210, 5580, 5170 и 4740. Построить соответствующее уравнение регрессии.
Задание 2.8
Изменение спроса на некоторое благо (у) у домашних хозяйств определенной структуры можно объяснить с помощью цены этого блага (х1) и дохода домохозяйства (х2). Соответствующая информация представлена в табл. 2.2.
Таблица 2.2
yt |
31,4 |
30,4 |
32,1 |
31,0 |
30,5 |
29,8 |
31,1 |
31,7 |
30,7 |
29,7 |
х1t |
4,1 |
4,2 |
4,0 |
4,6 |
4,0 |
5,0 |
3,9 |
4,4 |
4,5 |
4,8 |
х2t |
1050 |
1010 |
1070 |
1060 |
1000 |
1040 |
1030 |
1080 |
1050 |
1020 |
Требуется:
1. Оценить с помощью МНК параметры линейного двухфакторного уравнения
yt = 0 + 1 х1t +2 х2 + t
и интерпретировать оценки.
2. Оценить дисперсию ошибки 2.
3. Рассчитать оценку
математического ожидания
при
х1=5,5
и х2=980.
Задание 2.9
Изменение спроса на некоторое благо (у) у домашних хозяйств определенной структуры можно объяснить с помощью цены этого блага (х1) и дохода домохозяйства (х2). Соответствующая информация представлена в табл. 2.2. (см. задачу 2.8).
Требуется:
1. Построить однофакторные уравнения спроса у от цены (х1) и от дохода (х2). Оценить с помощью МНК параметры этих уравнений.
2. Сравнить оценки параметров из п. 1 с соответствующими оценками из задачи 2.8 п. 1. Кроме того, определить с помощью каждого из уравнений регрессии прогнозные значения математического ожидания целевой переменной при х1=5,5 и х2=980. Сравнить эти значения с прогнозным значением из решения задачи 2.8 п.3. Какое прогнозное значение предпочесть?
Задание 2.10
На основании данных из задания 2.8 построено двухфакторное уравнение регрессии. Установлено, что ошибки t этого уравнения имеют нормальное распределение.
Требуется:
1. Определить одномерные 95%-е доверительные интервалы для параметров регрессии 0, 1 и 2.
2. Определить 95%-й доверительный интервал дисперсии ошибки 2.