- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
Гетероскедастичность остатков – это свойство остатков, которое заключается в том, что их дисперсии или разбросы для каждого фиксированного Х являются неоднородными или неодинаковыми.
Для обнаружения гетероскедастичности остатков используется визуальный анализ графика зависимости Y от Х, линии тренда и остатков.
При малом объёме выборки для оценки гетероскедастичности используют тест Гольдфельда-Квандта, разработанный в 1965г. М.Г. Гольдфельд и Р.Э. Квандт рассмотрели однофакторную линейную модель, для которой дисперсия остатков возрастает пропорционально квадрату фактора, остатки распределены нормально и не подвержены автокорреляции.
упорядочить все n наблюдений по величине Х;
исключить из рассмотрения «с» центральных наблюдений;
оценить МНК отдельные регрессии для первых n1=
и последних
n2=
наблюдений;
Замечание. Мощность критерия зависит от выбора значения n1 и n2 по отношению к n. Обычно выбирают n1 = n2 таким образом, чтобы вся совокупность разделилась на три равные части. Однако М.Г. Гольдфельд и Р.Э. Квандт уточняют это правило и рекомендуют брать значения n1 = n2=11, если n=30 и n1 = n2=22, если n=60 [1].
Выдвигается основная гипотеза H0 об отсутствии гетероскедастичности и формируется статистика критерия F, которая в случае справедливости нулевой гипотезы имеет распределение Фишера-Снедекора соответственно со степенями свободы числителя и знаменателя n2 -2 и n1 -2.
рассчитать значение критерия Фишера
,
где
и
- дисперсии остатков регрессий для
первой и последней групп наблюдений
соответственно;принять статистическое решение:
если F факт > F табл = F(α; n2-2, n1-2), то гипотеза H0 отвергается и с вероятностью 1-α утверждается, что гетероскедастичность остатков является достоверной, в противном случае наличие гетероскедастичности является недоказанной.
В случае пригодности линейной модели рассчитайте прогнозное значение результата, если значение фактора увеличится на 5% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости =0,05
Построенная адекватная модель может использоваться для прогнозирования.
Точечный прогноз по уравнению регрессии.
Если известно
значение независимой переменной хр,
то прогноз зависимой переменной
осуществляется подстановкой этого
значения в полученное эмпирическое
уравнение регрессии
.
Показателем
точности прогноза служит его дисперсия
(чем она меньше, тем точнее прогноз):
Подставив вместо
её несмещённую оценку
,
получим выборочную исправленную
дисперсию рассматриваемой случайной
величины.
Очевидно, что чем больше объем выборки, тем точнее прогноз. При фиксированном объёме выборки прогноз тем точнее, чем больше вариация выборочных данных и чем ближе значение независимой переменной хр к среднему выборочному значению.
Интервальный прогноз среднего значения по уравнению регрессии.
Доверительный
интервал для М(Y/X=xр)
имеет вид:
Интервальный прогноз индивидуальных значений зависимой переменной. Интервал
определяет границы, за пределами которых могут оказаться не более 100α% точек наблюдений при Х=хр. Данный доверительный интервал шире доверительного интервала для условного математического ожидания.
