- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
Формулы для расчета доверительных интервалов имеют следующий вид:
,
,
которые с надёжностью (1 – α) накрывают определяемые параметры .
Если в границы доверительных интервалов попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр признается статистически незначимым.
Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
Проверить значимость уравнения регрессии – значит, установить, соответствует ли математическая модель, выражающая зависимость между переменными, имеющимся данным и достаточно ли включённых в уравнение объясняющих переменных для описания зависимой переменной.
Оценка значимости уравнения в целом дается с помощью F – критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т.е. H0 : β1=0, следовательно, фактор не оказывает влияния на результат.
Непосредственному
расчету F
– критерия
предшествует анализ дисперсии
результативного признака Y.
Центральное место в нем занимает
разложение общей суммы квадратов
отклонений переменной у от среднего
значения
на две части – «объясненную» и «остаточную»
(«необъясненную»):
=
+
Общая сумма квадратов Сумма квадратов Остаточная сумма
отклонений = отклонений, объясненная + квадратов
регрессией отклонений
Обозначим SSобщ = , SSR = и SSост = .
Любая сумма квадратов отклонений связана с числом степеней свободы df (degree of freedom), т.е. с числом свободы независимого варьирования признака.
Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Число степеней свободы остаточной суммы квадратов при линейной парной регрессии составляет n - 2 , общей суммы квадратов – n -1 и число степеней свободы для факторной суммы квадратов, т. е. объясненной регрессией равно единице. Имеем равенство:
n – 1 = 1+ (n – 2).
Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим средний квадрат отклонений или дисперсию на одну степень свободы.
;
;
.
Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F –отношения или F – критерий, статистика которого F при нулевой гипотезе
~ F(1,n-2)
распределена по закону Фишера со степенями свободы (1, n-2).
Если вычисленное значение F –отношения - F факт при заданном уровне значимости α больше критического (табличного) F табл , т.е.
F факт > F табл = F(α;1,n-2),
то гипотеза Н0 : β1=0 отвергается, признаётся статистическая значимость уравнения регрессии, т.е. связь между рассматриваемыми признаками есть и результаты наблюдений не противоречат предположению о её линейности.
Если F факт < F табл = F(α;1,n-2), то гипотеза Н0 не отвергается, уравнение регрессии считается статистически незначимым.
Критическое значение F табл = F(α;1,n-2), при заданном уровне значимости α и числе степеней свободы 1; n -2 находится по таблицам Приложения 4.
Величина F – критерия связана с коэффициентом детерминации R2. Значение F – критерия можно выразить следующим образом:
.
Оценка значимости уравнения регрессии обычно дается в виде таблицы дисперсионного анализа.
Дисперсионный анализ результатов регрессии
Источники вариации |
Число степеней свободы |
Сумма квадратов отклонений |
Дисперсия на одну степень свободы |
F - отношение |
|
фактиче- ское |
таблич- ное
|
||||
Объясненная |
1 |
|
|
|
|
Остаточная |
n– 2 |
|
|
F табл = F(α;1,n-2) |
|
Общая |
n– 1 |
|
|
|
|
Для расчёта коэффициента детерминации можно использовать формулу:
.
Максимальное
значение коэффициента R2
равно единице. Это происходит в том
случае, когда линия регрессии точно
соответствует всем наблюдениям, так
что
для
всех i
и все остатки
равны нулю.
Если в выборке отсутствует видимая связь между X и Y, то коэффициент детерминации будет близок к нулю.
Легко показать, что принцип минимизации суммы квадратов остатков при выполнении определённых условий эквивалентен минимизации дисперсии остатков, следовательно, автоматически максимизируется коэффициент детерминации.
