
- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции rxy. Существует несколько видов формулы линейного коэффициента корреляции, основные из них:
.
Корреляционная связь между переменными называется прямой, если rxy.>0, и обратной, если rxy <0.
Для практических расчётов наиболее удобна формула
,
так как по ней коэффициент корреляции находится из данных наблюдений, и на значение rxy не оказывает влияния погрешность округления.
Коэффициент корреляции принимает значения от -1 до +1.
При значении
коэффициента корреляции равном
1
связь представлена линейной функциональной
зависимостью. При этом все наблюдаемые
значения располагаются на линии
регрессии.
При rxy=0 корреляционная связь между признаками в линейной форме отсутствует. При этом линия регрессии параллельна оси Ох.
При rxy > 0 – корреляционная связь между переменными называется прямой, а при rxy < 0 – обратной.
Для характеристики силы связи можно использовать шкалу Чеддока.
Показатель тесноты связи |
0,1 – 0,3 |
0,3 – 0,5 |
0,5 – 0,7 |
0,7 – 0,9 |
0,9 – 0,99 |
Характеристика силы связи |
Слабая |
Умеренная |
Заметная |
Высокая |
Весьма высокая |
Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции rxy2, называемый коэффициентом детерминации. Коэффициент детерминации обозначим R2, т. о. имеем
R2 = rxy2.
Коэффициент детерминации характеризует долю дисперсии результативного признака Y, объясняемую регрессией, в общей дисперсии результативного признака. Соответственно величина 1- R2 характеризует долю дисперсии Y, вызванную влиянием остальных, не учтенных в модели факторов.
Замечание. Вычисление R2 корректно, если константа включена в уравнение регрессии.
4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
Эмпирическое
уравнение регрессии определяется на
основе конечного числа статистических
данных. Очевидно, что коэффициенты
эмпирического уравнения регрессии
являются случайными величинами,
изменяющимися от выборки к выборке. При
проведении статистического анализа
возникает необходимость сравнения
эмпирических коэффициентов регрессии
b0
и b1
с некоторыми теоретически ожидаемыми
значениями
этих коэффициентов. Данный анализ
осуществляется по схеме статистической
проверки гипотез.
Для проверки гипотезы
Н 0 : b1 = β1,
Н 1: b1 ≠ β1
используется
статистика
,
которая при справедливости гипотезы
Н0
имеет распределение Стьюдента с числом
степеней свободы df
= n
– 2, где
- стандартная ошибка коэффициента
регрессии
b1,
.
Наиболее важной на начальном этапе статистического анализа построенной модели является задача установления наличия линейной зависимости между Y и X. Эта проблема может быть решена проверкой гипотезы
Н 0 : b1 = 0,
Н 1: b1 ≠ 0.
Гипотеза в такой
постановке обычно называется гипотезой
о статистической значимости коэффициента
регрессии.
При этом если принимается нулевая
гипотеза, то есть основания считать,
что величина Y
не зависит от Х – коэффициент b1
статистически незначим (он
слишком близок к нулю). При отклонении
Н 0
коэффициент считается статистически
значимым,
что указывает на наличие определённой
линейной зависимости между Y
и X.
Используемая в этом случае t
– статистика
имеет вид:
и при нулевой гипотезе имеет распределение
Стьюдента с (n
-2) степенями
свободы.
Если вычисленное значение t – статистики - |tфакт| при заданном уровне значимости α больше критического (табличного) t табл , т.е.
|tфакт| > t табл = t(α ; n-2),
то гипотеза Н 0 : b1 = 0, отвергается в пользу альтернативной при выбранном уровне значимости. Это подтверждает статистическую значимость коэффициента регрессии b1.
Если |tфакт| < tтабл = t(α; n-2), то гипотеза Н0 не отвергается. Критическое значение t табл = t(α;n-2), при заданном уровне значимости α и числе степеней свободы n -2 находится по таблицам 2 Приложения.
По аналогичной схеме на основе t – статистики проверяется гипотеза о статистической значимости коэффициента b0 :
,
где
и
-
стандартная
ошибка коэффициента регрессии b0
.