- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
Показатели качества регрессии
Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции.
Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат.
Независимо от формы связи показатель множественной корреляции может быть найден как
,
(12)
где
- общая дисперсия результативного
признака;
- остаточная дисперсия для уравнения
.
Границы изменения
величины
- от 0 до 1. Чем ближе значение к единице,
тем теснее связь результативного
признака со всем набором исследуемых
факторов. Величина индекса множественной
корреляции должна быть больше или равна
максимальному парному индексу корреляции:
.
При правильном включении факторов в регрессионный анализ величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение факторы малозначимы, то индекс множественной корреляции может практически совпадать с индексом парной корреляции.
Для вычисления индекса множественной корреляции можно пользоваться следующей формулой
.
Для линейного уравнения регрессии в стандартизованном масштабе формула индекса множественной корреляции может быть представлена в виде
.
(13)
Пример 4. Для уравнения корреляции, полученного в предыдущем примере, вычислить индекс множественной корреляции и сравнить его с парными индексами корреляции.
Ранее были получены следующие значения:
;
;
.
Тогда по формуле (8) получаем
.
Сравниваем индекс множественной корреляции с парными индексами корреляции:
.
Следовательно, включение обоих факторов в уравнение множественной регрессии является обоснованным.
Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:
,
(14)
где
- индекс множественной корреляции (тоже,
что и
);
- число наблюдений;
- число факторов.
Полученное по
формуле (14) значение F
сравнивается с табличным при уровне
значимости
.
Если фактическое значение F-критерия
Фишера превышает табличное, то уравнение
статистически значимо с вероятностью
.
При использовании таблицы следует
принимать
.
Пример 5. Для уравнения корреляции, полученного в предыдущих примерах, вычислить значение F-критерия Фишера и определить статистическую значимость уравнения.
Ранее был вычислен
индекс множественной корреляции
.
По формуле (9) получаем
.
По таблице
определяем
для значений
:
Мы видим, что
,
а значит, полученное уравнение корреляции
является статистически значимым.
Предпосылки метода наименьших квадратов
В результате
построения с помощью МНК уравнения
регрессии получается не точное значение,
а отличающееся от точного на некоторую
величину
:
.
После того как
проведена оценка параметров модели,
рассчитывая разности фактических и
теоретических значений
можно получить оценки случайной
составляющей
.
В задачу регрессионного анализа входит
не только построение самой модели, но
и исследование остаточных величин.
Необходимость этого объясняется тем, что при использовании МНК предполагалось, что остатки представляют собой независимые случайные величины и их среднее значение равно 0; они имеют одинаковую (постоянную) дисперсию.
Таким образом, исследование остатков предполагают проверку наличия следующих предпосылок МНК.
Случайных характер остатков
Для проверки
строится график зависимости остатков
от теоретических значений результативного
признака. Если на графике получена
горизонтальная полоса, то остатки
представляют собой случайные величины
и МНК оправдан, а теоретические значения
хорошо аппроксимируют фактические
значения y.
Пример случайности остатков приведен
на рисунке 4.
Рисунок 4. График зависимости остатков от теоретических значений результативного признака для хорошей аппроксимации
Возможны различные случаи зависимости остатков от теоретических значений . Приведем примеры (рис.5,6).
Рисунок 5. Возможный вариант графика зависимости остатков от теоретических значений результативного признака
Рисунок 6. Возможный вариант графика зависимости остатков от теоретических значений результативного признака
Нулевая средняя
величина остатков, не зависящая от
Эта предпосылка
означает, что
.
Это условие выполнимо для линейных
моделей. Для определения независимости
величины остатков от
,
как и в случае определения независимости
от
,
строится график
от
.
Если остатки на графике расположены в
виде горизонтальной полосы, то они
независимы от значений
.
Если же зависимость присутствует, то
модель является неадекватной.
Гомоскедастичность
Гомоскедастичность остатков означает, что дисперсия каждого отклонения одинакова для всех значений x. Если это условие не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции (см. рисунок 4).
Т.к. дисперсия характеризует отклонение, то из рисунка 4 видно, что в первом случае дисперсия остатков растет по мере увеличения x, а во втором – дисперсия остатков достигает максимальной величины при средних значениях величины x и уменьшается при минимальных и максимальных значениях x. Наличие гетероскедастичности будет сказываться на уменьшении эффективности оценок параметров уравнения регрессии. Наличие гомоскедастичности или гетероскедастичности можно определять также по графику зависимости остатков от теоретических значений .
Рисунок 7. Поле корреляции с наличием гетероскедастичности
Отсутствие автокорреляции остатков
Под автокорреляцией остатков понимают зависимость распределения значений остатков друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Оценить эту зависимость можно вычислив коэффициент корреляции между этими остатками по формуле, аналогичной (11):
.
(15)
Если этот коэффициент окажется существенно отличным от нуля, то остатки автокоррелированны.
Пример 6. Проверить для уравнения регрессии, полученного ранее, выполнение предпосылок МНК.
Вычисляем
теоретические значения по уравнению
регрессии полученному ранее, а остатки
по формуле
и записываем в таблицу 2.
Таблица 2
-
Номер предприятия
1
2
3
4
, (%)
1
2
3
5
, (%)
0
1
3
4
, (тыс. руб.)
6
11
19
28
, (тыс. руб.)
5,79
11,31
19,07
27,87
, (тыс. руб.)
0,21
-0,31
-0,07
0,13
Теперь для проверки случайного характера остатков построим график их зависимости от теоретических значений .
Рисунок 8. График зависимости остатков от теоретических значений
Хотя по четырем точкам судить трудно, но в целом можно сделать вывод, что остатки распределены случайно. Из этого же рисунка можно сделать вывод о гомоскедастичности остатков, т. к. дисперсия каждого отклонения одинакова для всех значений x.
Вычислим теперь величину суммарного отклонения:
.
По малости этой величины можно сделать вывод о практически нулевой средней величине остатков.
Коэффициент автокорреляции остатков находим по следующим рядам данных:
, (тыс. руб.) |
-0,31 |
-0,07 |
0,13 |
|
0,21 |
-0,31 |
-0,07 |
;
;
;
Отсюда находим
Коэффициент корреляции не так велик, и его можно считать приемлемым. Таким образом, мы установили, что у нас были все предпосылки к тому, чтобы применять МНК и линейное уравнение регрессии к исходным данным.
