- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
Эконометрические регрессионные модели
Эконометрика – это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов. Эта наука возникла в результате взаимодействия и объединения трех компонент: экономической теории, статистических и экономических методов. Становление и развитие эконометрики происходили на основе так называемой высшей статистики, когда в уравнение регрессии начали включаться переменные не только в первой, но и во второй степени. В ряде случаев это необходимо для отражения свойства оптимальности экономических переменных, т.е. наличия значений, при которых достигается минимальное или максимальное воздействие на зависимую переменную. Таково, например, влияние внесения в почву удобрений на урожайность: до определенного уровня насыщение почвы удобрениями способствует росту урожайности, а по достижении оптимального уровня насыщения удобрениями его дальнейшее наращивание не приводит к росту урожайности и даже может вызвать ее снижение.
В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.
Простая регрессия представляет собой регрессию между двумя переменными – y и x, т.е. модель вида
,
где y – зависимая переменная (результативный признак);
x – независимая переменная (признак-фактор).
Множественная регрессия соответственно представляет собой регрессию результативного признака с двумя и большим числом факторов, т.е. модель вида
.
Простая регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Однако когда уверенности в правомерности такого допущения нет, необходимо использовать модель с большим числом факторов. Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства и целого ряда других вопросов эконометрики. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Суть этой проблемы включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии. Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции.
Линейная модель множественной регрессии
В линейной множественной регрессии
(6)
параметры при x называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего параметра на единицу при неизменном значении других факторов, закрепленных на среднем уровне.
Пример 1. Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:
,
где y – расходы семьи за месяц на продукты питания, тыс. руб.;
x1 – месячный доход на одного члена семьи, тыс. руб.;
x2 – размер семьи, человек.
Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Первый параметр не подлежит экономической интерпретации.
Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК).
Этот метод позволяет
получить такие оценки параметров, при
которых сумма квадратов отклонений
фактических значений результативного
признака (y)
от расчетных (теоретических)
минимальна:
(7)
Чтобы найти минимум функции (7), надо вычислить производные по каждому из параметров и приравнять их к нулю, т.к. равенство нулю производной – необходимое условие экстремума. В результате получается система уравнений, решение которой и позволяет получить оценки параметров регрессии.
Так, для уравнения (6) система нормальных уравнений имеет вид:
(8)
Решение системы (8) может быть осуществлено по одному из известных способов: Метод Гаусса, метод Крамера и т.д.
Пример
2. По четырем
предприятиям региона (см. табл.1) изучается
зависимость выработки продукции на
одного работника y
(тыс. руб.) от ввода в действие новых
основных фондов
(% от стоимости фондов на конец года) и
от удельного веса рабочих высокой
квалификации в общей численности рабочих
(%). Требуется написать уравнение
множественной регрессии.
Таблица 1
-
Номер предприятия
1
2
3
4
, (%)
1
2
3
5
,
(%)0
1
3
4
,
(тыс. руб.)6
11
19
28
