
- •Введение
- •Организационно-методический раздел
- •Практическое занятие №1 тема: построение эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 1.1
- •Задание 1.2
- •Задание 1.3
- •Задание 1.4
- •Задание 1.5
- •Задание 1.6
- •Практическое занятие №2 тема: методы оценки параметров линейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 2.1
- •Задание 2.2
- •Задание 2.3
- •Задание 2.4
- •Задание 2.5
- •Задание 2.6
- •Задание 2.7
- •Задание 2.8
- •Задание 2.9
- •Задание 2.10
- •Задание 2.11
- •Задание 2.12
- •Задание 2.13
- •Задание 2.14
- •Практическое занятие №3 тема: методы оценки коэффициентов эконометрических моделей c нестандартными ошибками Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 3.1
- •0,04; Если 5,0 хt 15,0;
- •0,16; Если 15,0 хt 25,0;
- •1,00, Если 25,0 хt 40,0.
- •Задание 3.2
- •Задание 3.3
- •Задание 3.4
- •Задание 3.5
- •Задание 3.6
- •Задание 3.7
- •Задание 3.8
- •Задание 3.9
- •Задание 3.10
- •Практическое занятие №4 тема: построение моделей в условиях мультиколлинеарности независимых переменных Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 4.1
- •Задание 4.2
- •Задание 4.3
- •Задание 4.4
- •Задание 4.5
- •Задание 4.6
- •Задание 5.1
- •Задание 5.2
- •Задание 5.3
- •Задание 5.4
- •Практическое занятие №6 тема: линейные модели временных рядов Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 6.1
- •Задание 6.2
- •Задание 6.3
- •Задание 6.4
- •Задание 6.5
- •Задание 6.6
- •Практическое занятие №7 тема: модели финансовой эконометрики Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 7.1
- •Задание 7.2
- •Задание 7.3
- •Задание 7.4
- •Практическое занятие №8 тема: системы взаимозависимых эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения Задание 8.1
- •Задание 8.2
- •Задание 8.3.
- •Задание 8.4
- •Задание 8.5
- •Практическое занятие №9 тема: эконометрические модели с переменной структурой Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •1. Охарактеризуйте причины изменчивости структуры модели и способы ее отображения в уравнении регрессии.
- •Упражнения Задание 9.1
- •Задание 9.2
- •Задание 9.3
- •Задание 9.4
- •Упражнения Задание 10.1
- •Задание 10.2
- •Задание 10.3
- •Задание 10.4
- •Задание 10.5
- •Задание 10.6
- •Практическое занятие №11 тема: методы оценки параметров нелинейных эконометрических моделей Краткое содержание темы
- •Вопросы, необходимые для подготовки к проведению занятия
- •Упражнения
- •Задание 12.1
- •Задание 12.2
- •Методические указания и типовые примеры решения задач по основным разделам курса Проблемы построения эконометрических моделей
- •Методы отбора факторов
- •Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
- •Характеристики и критерии качества эконометрических моделей
- •Качество оценок параметров эконометрических моделей
- •Эконометрические регрессионные модели
- •Линейная модель множественной регрессии
- •Решение
- •Нелинейные модели регрессии и их линеаризация
- •Показатели качества регрессии
- •Предпосылки метода наименьших квадратов
- •Обобщенный метод наименьших квадратов
- •Фиктивные переменные во множественной регрессии
- •Модели временных рядов
- •Системы эконометрических уравнений
- •Итоговая расчетно-графическая работа тема: построение и оценка значимости эконометрической модели Задания
- •Методические указания по выполнению расчетно-графической работы
- •Постройте поле корреляции и сформулируйте гипотезу о форме связи
- •2. Рассчитайте параметры выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (мнк)
- •3. Оцените тесноту связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации
- •4. Используя критерий Стьюдента оцените статистическую значимость коэффициентов регрессии и корреляции
- •Постройте интервальные оценки параметров регрессии. Проверьте, согласуются ли полученные результаты с выводами, полученными в предыдущем пункте
- •Постройте таблицу дисперсионного анализа для оценки значимости уравнения в целом
- •С помощью теста Гольдфельда – Квандта исследуйте гетероскедастичность остатков. Сделайте выводы
- •9. Оцените полученные результаты, проинтерпретируйте полученное уравнение регрессии
- •Решение итоговой расчетно-графической работы с помощью ппп excel
- •Тематика рефератов
- •Примерый перечень вопросов для контроля самостоятельной работы студентов
- •Примерный перечень вопросов к зачету
- •Приложение 1. Функция стандартного нормального распределения
- •Приложение 2. Двусторонние квантили распределения Стьюдента
- •Приложение 5. Квантили распределения 2()
- •Список литературы
- •Оглавление
Если имеет место соотношение I *, то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым), где * – табличное значение критерия Стьюдента.
Если же i *, то логичен вывод, что значение ai может рассматриваться как отличная от нуля оценка i-го коэффициента модели, и, таким образом, влияние фактора хi на переменную у целесообразно признать значимым.
Если фактор хi признается незначимым, то его целесообразно удалить из модели. Эта операция приводит к уменьшению общего количества независимых переменных в модели.
Таким образом, можно предложить следующую поэтапную процедуру построения окончательно варианта модели на основе апостериорного подхода:
1. В исходный вариант модели включаются все факторы, отобранные в ходе содержательного анализа проблемы. Для этого варианта рассчитываются значения оценок коэффициентов модели, их среднеквадратические ошибки и значения критериев Стьюдента.
2. Из модели удаляют незначимый фактор, характеризующийся наименьшим значением i (при условии, что i *), и таким образом формируют новый вариант модели с уменьшенным на один числом факторов. Заметим, что в модели может быть несколько незначимых факторов. Однако все их одновременно удалять не следует. Возможно, что незначимость большинства из них обусловлена влиянием наихудшего из незначимых факторов, и на следующем шаге расчетов эти факторы окажутся значимыми.
3. Процесс отбора факторов можно считать законченным, когда остающиеся в модели факторы являются значимыми. Если полученный вариант модели удовлетворяет и другим критериям ее качества, то процесс построения модели можно считать завершенным в целом.
В противном случае целесообразно попытаться сформировать другой альтернативный вариант модели, отличающийся от предыдущего либо составом факторов, либо формой их взаимосвязи с зависимой переменной у.
Каждый из этих подходов имеет свои преимущества и недостатки.
Априорный путь отбора факторов не обладает достаточной обоснованностью. Он в большей степени использует прямые количественные индикаторы силы взаимосвязей между рассматриваемыми величинами и не принимает во внимание в полной мере особенности комплексного влияния независимых факторов на переменную уt, т. е. своеобразные эффекты эмерджентности такого влияния. Этот эффект выражается в том, что совокупное воздействие нескольких факторов на переменную уt может значительно отличаться от суммы воздействий каждого из них именно в силу наличия внутренних взаимосвязей между независимыми переменными.
Вместе с тем использование априорного подхода часто позволяет уточнить некоторые предварительные альтернативные варианты наборов независимых факторов, проверить исходные предпосылки модели относительно правильности выбора формы взаимосвязей между ними.
Апостериорный подход к отбору факторов на первый взгляд является более предпочтительным как раз из-за того, что целесообразность включения каждого из факторов в эконометрическую модель определяется на основании всего комплекса взаимосвязей между вошедшими в модель переменными. Однако, когда общее количество факторов достаточно велико, то нет никаких гарантий, что множество несущественных, а то и ложных взаимосвязей между ними не будет превалировать над основными. В результате может оказаться, что в числе первых кандидатов на исключение будут названы наиболее важные, значимые с точки зрения влияния на переменную уt факторы. Поэтому в сложных случаях, т. е. при наличии большого числа отобранных для включения в модель на этапе содержательного анализа факторов, специалисты рекомендуют сочетать при формировании их оптимального состава оба подхода – априорный и апостериорный.
Согласно этим рекомендациям с помощью методов априорного отбора, используя при этом и содержательный анализ, формируются альтернативные варианты включаемых в модель наборов факторов. Далее с помощью методов апостериорного отбора эти наборы уточняются и соответствующие им варианты моделей сопоставляются по ряду характеристик их качества. Предполагается, что лучший из вариантов модели содержит и оптимальный набор факторов.
В результате процедура отбора факторов в эконометрическую модель превращается в перебор некоторого множества их приемлемых сочетаний, сформированных на базе априорного подхода.
Перебирая различные варианты составов независимых факторов, рассматривая возможные виды их взаимосвязей с зависимой переменной, исследователь формирует и разные варианты (модификации) эконометрической модели для описания рассматриваемых процессов. В этом случае возникает проблема выбора оптимального или наиболее рационального среди них. Обычно эта проблема решается на основе аналитического сопоставления статистических характеристик качества построенных вариантов, рассчитываемых уже при известных значениях оценок их параметров.