
- •Вступ біологія – комплексна наука про живу природу
- •Система органічного світу
- •Предмет і методи біології
- •Рівні організації живої матерії
- •Основні ознаки живого
- •Основні систематичні категорії (таксони)
- •Імперія неклітинні царство віруси
- •Імперія клітинні. Надцарство прокаріоти царство дроб’янки Відділ Бактерії
- •Відділ Ціанобактерії (Синьо-зелені водорості)
- •Імперія клітинні. Надцарство еукаріоти еукаріотична клітина
- •Будова еукаріотичної клітини
- •Клітинний цикл. Мітоз
- •Царство гриби
- •Лишайники
- •Царство рослини (plantae) загальна характеристика царства рослини
- •Тканини рослин
- •Вегетативні органи вищих рослин
- •Ґрунт і добрива
- •Брунька
- •Життєдіяльність рослин Фотосинтез
- •Щорічно на Землі внаслідок фотосинтезу утворюється приблизно 150 млрд. Тонн органічної речовини і виділяється близько 200 млн. Тонн кисню.
- •Транспорт речовин у рослинному організмі
- •Подразливість (координація) у рослин
- •Регуляція процесів життєдіяльності у рослин
- •Вегетативне розмноження рослин
- •Генеративні органи покритонасінних рослин
- •Будова квітки
- •Класифікація суцвіть за типом галуження головного стебла
- •Типи запилення:
- •Насінина
- •Будова насінини
- •Проростання насіння
- •Підцарство справжні водорості Загальна характеристика
- •Відділ Зелені водорості
- •Будова і цикл розвитку хламідомонади
- •Будова і цикл розвитку улотрикса
- •Відділ Діатомові водорості
- •Відділ Бурі водорості
- •Відділ Червоні водорості
- •Відділ Евгленові водорості
- •Підцарство вищі рослини Загальна характеристика
- •Спорові
- •Відділ Псилотофіти
- •Відділ Мохи (Бріофіти)
- •Клас Печіночні мохи
- •Клас Листяні мохи
- •Будова і цикл розвитку політриха
- •Будова і цикл розвитку сфагнуму
- •Відділ Папороті (Поліподіофіти)
- •Відділ Хвощі (Еквізетофіти)
- •Відділ Плауни (Лікоподіофіти)
- •Відділ Голонасінні (Пінофіти)
- •Клас Гінкгові
- •Клас Саговникові
- •Клас Хвойні
- •Відділ Покритонасінні (Квіткові, Магноліофіти)
- •Царство тварини (animalia) загальна характеристика царства тварини
- •Підцарство одноклітинні. Тип найпростіші Загальна характеристика
- •Клас Корененіжки (Саркодові)
- •Клас Джгутикові (Мастігофори)
- •Клас Інфузорії (Ціліофори)
- •Клас Споровики (Спорозої)
- •Підцарство багатоклітинні Загальна характеристика
- •Тип губки
- •Тип кишковопорожнинні
- •Тип плоскі черви
- •Тип круглі черви
- •Тип кільчасті черви
- •Тип молюски (м’якуни)
- •Тип членистоногі Загальна характеристика
- •Клас Ракоподібні (Crustacea)
- •Клас Павукоподібні (Arachnida)
- •Клас Комахи (Insecta)
- •Тип голкошкірі
- •Тип хордові Загальна характеристика
- •Підтип первиннохордові (безчерепні) Клас Головохордові
- •Підтип хребетні (черепні) Клас Круглороті
- •Надклас Риби
- •Еволюція хребетних
- •Клас Земноводні
- •Клас Плазуни
- •Клас Птахи
- •Клас Ссавці (Звірі)
- •Біологія людини Вступ
- •Тканини тварин і людини
- •Нервова система
- •Спинний мозок
- •Головний мозок
- •Ендокринна система
- •Опорно-рухова система
- •Кровоносна система Кров
- •Органи кровообігу
- •Лімфатична система
- •Дихальна система
- •Травна система
- •Обмін речовин і енергії
- •Видільна система
- •Статева система
- •Аналізатори (сенсорні системи)
- •Зоровий аналізатор
- •Слуховий аналізатор
- •Вестибулярний аналізатор
- •Нюховий аналізатор
- •Смаковий аналізатор
- •Шкірний аналізатор
- •Руховий аналізатор
- •Вісцеральний аналізатор
- •Вища нервова діяльність
- •Хімічні елементи. Вода. Мінеральні солі Хімічні елементи
- •Мінеральні солі
- •Органічні сполуки живих систем
- •Вуглеводи
- •Нуклеїнові кислоти
- •Пластичний обмін Біосинтез білків
- •Енергетичний обмін
- •Спадковість і мінливість організмів
- •Основи екології
- •Вчення про екологічні фактори
- •Основні середовища існування організмів
- •Адаптивні біологічні ритми організмів
- •Популяційна екологія
- •Біогеоценологія
- •Людина і біосфера Біосфера та її межі
- •Охорона природи
- •Основи еволюційного вчення
- •Виникнення і розвиток життя на землі Гіпотези виникнення життя
- •Геохронологічна періодизація розвитку життя на Землі
- •Антропогенез
- •Список використаної літератури
Пластичний обмін Біосинтез білків
Амінокислоти синтезуються живими організмами із азотовмісних сполук (азоту, аміаку, нітратів тощо). Синтез кожної амінокислоти – складний процес, який каталізується багатьма ферментами.
У 1961 році французькі біохіміки Жакоб і Моно відкрили існування іРНК і пояснили механізм біосинтезу білка: на основі структурного гена (ділянки ДНК, що несе інформацію про структуру певного білка) створюється іРНК, на основі іРНК створюється білок.
Біосинтез білкової молекули – складний багатоступінчастий процес, у якому виділяють 3 основні етапи.
І. Транскрипція – синтез іРНК на матриці ДНК за принципом комплементарності з участю фермента РНК-полімерази; відбувається в ядрі; включає такі стадії:
ініціація транскрипції – до ДНК підходить фермент РНК-полімераза (приєднується до гена-промотора, який визначає матричний ланцюг ДНК); подвійна спіраль ДНК частково розкручується; РНК-полімераза переміщується до структурного гена і сполучає два перші нуклеотиди іРНК, що є комплементарними відповідним нуклеотидам ДНК;
елонгація транскрипції – фермент просувається вздовж ланцюга ДНК, і відбувається нарощування комплементарного ланцюга іРНК; по ходу фермента подвійна спіраль ДНК поступово розкручується і знову закручується;
термінація транскрипції – завершується синтез іРНК на матриці ДНК; синтезована іРНК (про-іРНК) виходить із ядра в цитоплазму і там «дозріває»: зайві ділянки «вирізаються» редуктазами (рестриктазами) (цей процес має назву сплайсинг), а потрібні – «зшиваються» лігазами.
ІІ. Трансляція – синтез поліпептидного ланцюга на матриці іРНК між субодиницями рибосоми з участю ферментів синтетаз; відбувається в цитоплазмі (на гранулярній ЕС); включає такі стадії:
приєднання іРНК до рибосоми – іРНК проходить між субодиницями рибосоми – у функціональному центрі рибосоми одночасно вміщуються 2 триплети (згодом на одну іРНК, як правило, нанизується кілька рибосом – формується полісома);
активація амінокислот і їх приєднання до тРНК – з участю фермента аміноацил-тРНК-синтетази і з використанням енергії АТФ амінокислоти приєднуються до відповідних тРНК – утворюються аміноацил-тРНК-комплекси (при цьому амінокислоти набувають енергії активації, необхідної для утворення пептидного зв’язку);
ініціація трансляції – у функціональному центрі рибосоми до сигнального кодона іРНК (АУГ) за допомогою комплементарного антикодона (УАЦ) приєднується тРНК, яка несе метіонін; до наступного кодона також приєднується певна тРНК з амінокислотою; дві амінокислоти опиняються поруч, і між ними виникає пептидний зв'язок;
елонгація трансляції – рибосома робить «крок» по іРНК в напрямку 5´-3´, посуваючись на три нуклеотиди; тРНК, яка приєдналась першою, від’єднується, а у функціональний центр рибосоми потрапляє новий аміноацил-тРНК-комплекс; пептидний зв'язок виникає між другою і третьою амінокислотами; рибосома «крокує» (1 «крок» – 1 триплет), і поліпептидний ланцюг нарощується (перші кілька амінокислотних ланок становлять так звану сигнальну послідовність);
термінація трансляції – на шляху рибосоми опиняється один із нонсенс-кодонів – синтез припиняється.
ІІІ. Формування нативної структури білка – під час нарощення поліпептидного ланцюга починає формуватись просторова конфігурація молекули, а після завершення синтезу від неї від’єднується сигнальна послідовність, і вона набуває остаточної структури (в ЕС та комплексі Гольджі може відбуватись модифікація окремих амінокислотних радикалів).
95% ДНК не кодує ні білків, ні РНК. Функції цієї ДНК вивчені недостатньо. Відомо, що частина її бере участь у формуванні хромосом, а частина – формує спейсери («розділові знаки» між генами).
5% ДНК складають кодуючі ділянки (гени), які, в свою чергу, містять ділянки екзони (кодують білок) та інтрони (кодують непотрібні фрагменти іРНК, які «вирізаються» при «дозріванні»).
Механізм регуляції білкового синтезу було з’ясовано у 1961 році Жакобом і Моно та продемонстровано на прикладі моделі галактозного оперона кишкової палички.
До складу оперона у визначеній послідовності входять: ген-регулятор, ген-промотор (функції розглядались вище), ген-оператор, структурний ген (функції розглядались вище).
У моделі галактозного оперона структурний ген несе інформацію про синтез фермента β-галактозидази. Ген-регулятор кодує структуру білка-репресора (білок-репресор синтезується в неактивній формі). Якщо концентрація β-галактозидази сягає порогового рівня, то білок-репресор активізується і взаємодіє з геном-оператором. Ген-оператор блокує активність структурного гена (не відбувається транскрипція і, відповідно, трансляція – припиняється синтез β-галактозидази).
Біохімічні реакції, які відбуваються на основі «зчитування» інформації за принципом комплементарності нуклеотидів (реплікація РНК, транскрипція, трансляція), називаються реакціями матричного синтезу.