
- •1. Три задачи по расчету простого трубопровода
- •1.1 Классификация трубопроводов
- •1.2. Уравнение для расчета простого трубопровода
- •1.3 Три задачи по расчету простого трубопровода
- •2. Характеристика трубопровода
- •3. Последовательное и параллельное соединение простых трубопроводов Последовательное соединение
- •Параллельное соединение
- •4. Движение жидкости в трубах и каналах некруглого сечения
- •Для расчетов трубопроводов некруглого сечения применяют понятие эквивалентного диаметра, равного учетверенному значению гидравлического радиуса
- •5. Трубопроводы с насосной подачей жидкости
- •6. Основные законы равновесия и движения газов. Термодинамические свойства газов.
- •Основные уравнения для потоков газа.
- •Уравнение Бернулли для потоков газа.
- •7. Физические особенности работы газопроводов и каналов систем вентиляции. Газопроводы, работающие при малых перепадах давления.
- •Воздухопроводы систем вентиляции.
- •Изменение параметров газа вдоль трубы (газопроводы, работающие при больших перепадах давления)
- •8. Истечение жидкости через отверстия и насадки
- •Истечение через малое отверстие в тонкой стенке
- •8.2 Истечение при переменном напоре
- •Истечение через насадки при постоянном напоре
- •Внешний цилиндрический насадок
- •9. Основы теории пограничного слоя. Обтекание тел потоком жидкости и газа.
- •9.1. Понятие пограничного слоя и его свойства.
- •9.2. Расчёт сопротивления пластинки в потоке при продольном её обтекании
- •10. Обтекание тел потоком вязкой жидкости Отрыв пограничного слоя при обтекании криволинейных поверхностей.
- •Обтекание цилиндра потоком вязкой жидкости
- •11. Силы, действующие на обтекаемые потоком тела. Сила сопротивления трения и сила сопротивления давления.
- •Хорошо обтекаемые и плохо обтекаемые тела.
- •Определение сил, действующих на тела при обтекании их потоком жидкости.
- •Обтекание шара при малых числах Рейнольдса.
- •Определение вязкости жидкости с помощью формулы Стокса.
- •12. Гидродинамическое моделирование
- •Математическое, аналоговое и физическое моделирование
- •Геометрическое, кинематическое и динамическое подобие
- •3. Критерии гидродинамического подобия
- •Подобие потоков в случае преобладающего влияния сил тяжести
- •Подобие потоков в случае преобладания сил трения
- •Подобие потоков в случае преобладающего влияния сжимаемости жидкости
- •Подобие потоков в случае преобладающего влияния сил давления в этом случае условие частичного динамического подобия имеет вид
- •Подобие в случае одновременного действия нескольких сил
- •Автомодельность
- •Задачи.
- •Литература
12. Гидродинамическое моделирование
Математическое, аналоговое и физическое моделирование
Многие практически важные задачи гидравлики и гидромеханики не поддаются теоретическому решению (по существу ни один из вопросов, касающихся турбулентного движения жидкости, не может быть решен практически); тогда прибегают к исследованию процессов на моделях – так называемому моделированию.
Различают три типа моделирования: математическое, аналоговое и физическое.
Совокупность уравнений, описывающих физический процесс, называют математической моделью, а изучение его поведения в тех или иных условиях путем решения этих уравнений – математическим моделированием. Математическое моделирование гидравлических явлений возможно осуществлять аналитическими методами, а также методами численного расчета с применением ЭВМ.
Явление может исследоваться на основе изучения его модели иной физической природы, если математически они описываются одними и теми же уравнениями. Такое моделирование называют аналоговым. Например, замена натурного фильтрационного потока течением электрического тока по проводнику является аналоговым моделированием (метод ЭГДА).
Если модель и моделируемый объект (натура) имеют одну и ту же физическую природу, то такое моделирование называется физическим. Например, исследование обтекания мостовой опоры на малой модели в лаборатории. В дальнейшем будем рассматривать только физическое моделирование. Опыты обычно проводят на малых моделях натурных объектов. Они просты в изготовлении, их малые размеры позволяют осуществлять в лаборатории разнообразные условия опытов и выявлять искомые закономерности. Тем самым исследования на модели приводят к значительной экономии. При моделировании возникает задача об условиях, при которых результаты исследований модельного потока можно перевести на натурный поток; решение этой задачи дает теория математического подобия потоков жидкости.
Два физических явления подобны, если величины одного могут быть получены из соответствующих величин другого, взятых в сходственных точках, простым умножением на одинаковые для всех точек множители.
Геометрическое, кинематическое и динамическое подобие
Различают геометрическое, кинематическое и динамическое подобие потоков; совокупность их составляет механическое подобие потоков жидкости.
Геометрическое подобие состоит в том, что все сходственные линейные элементы двух подобных потоков пропорциональны, а соответствующие углы равны. При этом отношение сходственных линейных размеров натуры LH и модели LM одинаково для всех размеров
(12.1)
где αL – линейный масштаб.
Сходственные площади и объемы также находятся в одном и том же соотношении
(12.2)
,
.
Одного геометрического подобия недостаточно для того, чтобы модель правильно отражала работу натурного сооружения или потока. Например, движение жидкости в двух геометрически подобных трубах может иметь различный характер – в одной ламинарный, а в другой – турбулентный.
Кинематическое подобие состоит в том, что в сходственных точках все кинематические параметры находятся в одинаковом отношении, причем векторные величины имеют соответственно одинаковые направления. Во всех сходственных точках для линейной скорости имеем
(12.3)
так же как и для линейного ускорения
(12.4)
Время прохождения сходственными частицами сходственных расстояний находится (как следствие (12.3) и (12.4)) также в одном и том же соотношении
(12.5)
Картины линий тока на натуре и на модели будут по виду тождественны. Условия (12.1) – (12. 5) дают связь между масштабными коэффициентами. Например, для масштабного коэффициента скорости αν
.
Динамически подобными называются такие потоки, в которых выполняются следующие три условия:
В сходственных точках этих потоков действуют силы одной и той же природы.
Отношения между одноименными силами во всех сходственных точках потоков равны одной и той же величине.
Начальные и граничные условия в этих потоках тождественны и отличаются только масштабом задаваемых параметров.
Так как размерностью силы является произведение размерностей массы M = ρ · L3 и ускорения j = L · T –2 , т. е.
F = ρ · L3 ·L· T-2 = ρL2 · L2/T2 =ρ · L2 · V2,
то для динамического подобия необходимо соблюдение отношения
(12. 6)
Задача 12.1: Выразить масштабы подобия угловой скорости αω, объемного расхода αQ, энергии αE и мощности в зависимости от масштаба времени αt, линейного масштаба αL и масштаба плотности αρ.
Решение: Угловая скорость есть
отношение радиана ко времени, поэтому
ω ~ 1/t. Масштаб подобия
угловой скорости будет равен ωН/ωМ
= tM/tH
= αt-1.
Аналогично для расхода Q
= V · S
~ L/t ·
L2 ~ L3/t
.
Для энергии получаем
.
Задача 12.2: Определить масштаб времени αt, если модель судна, изготовленная в 1/100 натуральной величины, движется в 10 раз медленнее судна.
Решение: По условию задачи VH/VM = 10, VH/VM = αL · αt-1. Окончательно αL · αt-1 = 10 и αt = 100/10 = 10.