Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мат стат.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
279.55 Кб
Скачать

Слабый закон больших чисел

Пусть есть бесконечная последовательность одинаково распределённых и некоррелированных случайных величин  , определённых на одном вероятностном пространстве  . То есть их ковариация  . Пусть  . Обозначим   выборочное среднее первых   членов:

.

Тогда  .

Усиленный закон больших чисел

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин  , определённых на одном вероятностном пространстве  . Пусть  . Обозначим   выборочное среднее первых   членов:

.

Тогда   почти наверное.

Предмет и задачи математической статистики

Математическая статистика – это наука, занимающаяся методами обработки экспериментальных данных. Любая наука решает в порядке возрастания сложности и важности следующие задачи:

1) описание явления;

2) анализ и прогноз;

3) поиск оптимального решения.

Такого рода задачи решает и математическая статистика: 

1) систематизировать полученный статистический материал; 

2) на основании полученных экспериментальных данных оценить интересующие нас числовые характеристики наблюдаемой случайной величины; 

3) определить число опытов, достаточное для получения достоверных результатов при минимальных ошибках измерения. 

Одной из задач третьего типа является задача проверки правдоподобия гипотез. Она может быть сформулирована следующим образом: имеется совокупность опытных данных, относящихся к одной или нескольким случайным величинам. Необходимо определить, противоречат ли эти данные той или иной гипотезе, например, гипотезе о том, что исследуемая случайная величина распределена по определенному закону, или две случайные величины некоррелированы (т.е. не связаны между собой) и т.д. В результате проверки правдоподобия гипотезы она либо отбрасывается, как противоречащая опытным данным, либо принимается, как приемлемая.

Таким образом, математическая статистика помогает экспериментатору лучше разобраться в полученных опытных данных, оценить, значимы или нет определенные наблюденные факты, принять или отбросить те или иные гипотезы о природе рассматриваемого явления.

Виды выборок

Основополагающее понятие в вероятностно-статистических методах принятия решений – выборка. Как уже говорилось, выборка – это

1) набор наблюдаемых значений или  2) множество объектов, отобранные из изучаемой совокупности.

Например, единицы продукции, отобранные из контролируемой партии или потока продукции для контроля и принятия решений. Наблюдаемые значения обозначим x1, x2,…, xn, где n – объем выборки, т.е. число наблюдаемых значений, составляющих выборку. О втором виде выборок уже шла речь при рассмотрении гипергеометрического распределения, когда под выборкой понимался набор единиц продукции, отобранных из партии. Там же обсуждалась вероятностная модель случайной выборки.

В вероятностной модели выборки первого вида наблюдаемые значения обычно рассматривают как реализацию независимых одинаково распределенных случайных величин  . При этом считают, что полученные при наблюдениях конкретные значения x1, x2,…, xn соответствуют определенному элементарному событию  , т.е.

.

При повторных наблюдениях будут получены иные наблюдаемые значения, соответствующие другому элементарному событию  . Цель обработки статистических данных состоит в том, чтобы по результатам наблюдений, соответствующим элементарному событию  , сделать выводы о вероятностной мере Р и результатах наблюдений при различных возможных  .

Применяют и другие, более сложные вероятностные модели выборок. Например, цензурированные выборки соответствуют испытаниям, проводящимся в течение определенного промежутка времени. При этом для части изделий удается замерить время наработки на отказ, а для остальных лишь констатируется, что наработки на отказ для них больше времени испытания. Для выборок второго вида отбор объектов может проводиться в несколько этапов. Например, для входного контроля сигарет могут сначала отбираться коробки, в отобранных коробках – блоки, в выбранных блоках – пачки, а в пачках – сигареты. Четыре ступени отбора. Ясно, что выборка будет обладать иными свойствами, чем простая случайная выборка из совокупности сигарет.

Группировка статистических данных

Группировка — это метод, при котором вся исследуемая совокупность разделяется на группы по какому-то существенному признаку. Например, группировка предприятий по формам собственности или группировка населения по размеру среднедушевого дохода.

Группировка представляет собой способ подразделения рассматриваемой совокупности данных на однородные по изучаемым признакам группы. Это делается с целью изучения структуры этой совокупности либо взаимосвязей между отдельными элементами этой совокупности. С помощью группировки можно выявить влияние отдельных единиц на средние итоговые показатели. Так, например, группировка рабочих данной организации по уровню производительности труда используется с целью выявления влияния высокой производительности труда отдельных рабочих на среднюю производительность по организации и для определения резерва, кроющегося в повышении производительности труда всех рабочих до уровня передовых рабочих.

Как будет показано в статьях данного сайта, наибольшее распространение в экономическом анализе имеет группировка по факторам, связанным:

  • с трудовыми ресурсами, т.е. с живым трудом;

  • со средствами труда, т.е. с основными производственными фондами;

  • с предметами труда, т.е. с материальными ресурсами.

Эти три группы факторов оказывают влияние на объем продукции, выпускаемой данной организацией.