
- •1.Загальні відомості про електричне поле. Основні характеристики електричного поля
- •2. Визначення індуктивності, опору, напруги, електрична ємність. З'єднання конденсаторів.
- •3. Лінійні електричні кола постійного струму. Джерело струму, з'єднувальні дроти, приймачі.
- •4. Режим роботи електричного кола. Послідовне, паралельне та змішане з'єднання резисторів.
- •5. Втрата напруги. Втрата напруги у лініях.
- •6. Закон Ома та закон Кірхгофа.
- •7. Розрахунок електричного кола методом згортання.
- •8. Розрахунок складного електричного кола методом двох вузлів, еквівалентного генератора та методом контурних струмів.
- •9. Магнітне поле, його характеристики.
- •10. Магнітне поле дроту зі струмом, закон Ома для магнітного кола. Електромагнітна сила.
- •11. Феромагнетики, явище Гістерезисна, магнітне коло, та його розрахунки.
- •12. Явище електромагнітної індукції. Явище самоіндукції.
- •13. Початкові відомості про змінний струм, векторна діаграма.
- •14. Кола змінного струму з r, l, c. Векторні діаграми, трикутники потужностей, опорів та напруг.
- •20. Паралельне з'єднання кола змінного струму з r, l, c, метод розрахунку. Паралельне з'єднання
- •21. Трифазні кола змінного струму. Одержання трифазного струму
- •22. З'єднання трифазних споживачів у зірку. Основні співвідношення, векторні діаграми.
- •23. З'єднання трифазних споживачів у трикутник. Основні співвідношення, векторні діаграми
- •24. Електричні вимірювання. Основні метрологічні поняття. Методи вимірювання.
- •25. Улаштування електровимірювальних приладів. Класифікація електровимірювальних приладів.
- •26. Вимірювальний механізм приладів. Електротехнічні виміри.
- •27. Вимірювання струму та напруги.
- •28. Вимірювання потужності трифазного кола.
- •Метод двох приладів. Цей метод застосовується в асиметричних трьохдротяних ланцюгах трифазного струму.
- •Метод трьох приладів. В тому разі коли несиметричне навантаження включається зіркою з нульовим дротом, тобто коли є асиметрична трифазна чотирьохдротяна система, застосовуються три ватметри.
- •29. Вимірювання опору. Прямі та непрямі методи вимірювання
- •30. Призначення трансформаторів. Улаштування та режим роботи.
- •31. Утрати в трансформаторах, та способи їх уникнення.
- •32. Робота трансформатора під навантаженням. Ккд трансформатора. Режим навантаження
- •Ккд трансформатора
- •33. Робота трансформатора на холостому ході. Режим холостого ходу
- •34. Режим короткого замикання у трансформатора. Режим короткого замикання
- •35. Паралельна робота трансформаторів. Вимоги паралельної роботи трансформаторів.
- •36. Трифазний трансформатор. Улаштування та режим роботи.
- •37. Вимірювальні трансформатори, призначення, улаштування та принцип дії.
- •38. Автотрансформатор, призначення, улаштування та принцип дії. Автотрансформатор
- •39. Електричні машини постійного струму. Загальні відомості, призначення та принцип дії.
- •40. Будова машини постійного струму та принцип дії.
- •41. Реакція якоря машини постійного струму.
- •42. Комутація машин постійного струму.
- •43. Способи збудження машини постійного струму.
- •44. Генератор постійного струму. Класифікація схеми підключення обмоток збудження машин постійного струму.
- •49. Універсальні колекторні двигуни.
- •50. Тахогенератор постійного струму, призначення, будова та принцип дії.
- •51. Асинхронний лінійний двигун, призначення, будова та принцип дії.
- •52. Виконавчі двигуни постійного струму, призначення, будова та принцип дії.
- •53. Асинхронні тахогенератори, призначення, будова та принцип дії.
- •54. Синхронні виконавчі двигуни (крокові двигуни), призначення, будова та принцип дії.
- •Переваги:
- •Недоліки:
- •55. Синхронні реактивні двигуни, призначення, будова та принцип дії.
- •56. Електричні машини змінного струму. Загальні відомості, призначення та принцип дії.
- •57. Визначення та конструктивна схема асинхронної машини.
- •58. Сполучення фаз обмотки статора зіркою та трикутником в асинхронних машинах, види роторів ад. Короткозамкнутый ротор
- •Фазный ротор
- •59. Принцип роботи асинхронних двигунів, ковзання та коефіцієнт трансформації ад.
- •60. Електромагнітний момент асинхронного двигуна.
- •61. Енергетична діаграма та ккд ад.
- •62. Асинхронні конденсаторниі двигуни, принцип дії, пристрій та призначення.
- •63. Будова та принцип роботи синхронної машини, переваги та недоліки синхронної машини.
- •Синхронный двигатель имеет ряд преимуществ перед асинхронным:
- •Недостатки синхронного двигателя:
- •64. Режим генератора та режим двигуна синхронної машини. Двигательный принцип
- •Генераторный режим
- •65. Реакція якоря синхронної машини.
- •66. Електромагнітний момент та кутова характеристика синхронної машини.
- •67. Характеристики синхронних генераторів.
- •68. Паралельна робота синхронних генераторів.
- •69. Безконтактні синхронні генератори, принцип дії та пристрій
- •70. Характеристики синхронних двигунів.
- •2. Характеристики синхронних двигунів
- •71. Пуск синхронного двигуна. Пуск синхронного двигателя
- •72. Синхронні компенсатори.
- •73. Втрати та ккд синхронної машини.
- •74. Сельсин, призначення та принцип дії.
- •75. Електромагнітні перетворювачі, призначення та принцип дії.
73. Втрати та ккд синхронної машини.
Потери в синхронной машине состоят из:
1) электрических потерь в обмотке статора;
2) магнитных потерь в стали статора;
3) добавочных потерь в полюсных наконечниках или в поверхностном слое бочки ротора, вызванных пульсациями поля вследствие зубчатости внутренней поверхности статора и высшими гармоническими поля ста-тсра;
4) механических потерь на трение в подшипниках и вращающихся частей о воздух или другой газ, охлаждающий машину;
действия на соответствующие поля токов, возникающих в успокоительной обмотке и главным образом в обмотке возбуждения, так как ее постоянная времени соизмерима с периодом колебаний. Поэтому приведенные выводы следует рассматривать как приближенные.
Рис. 4-94. Значения к. п. д. (η) синхронных генераторов и двигателей при номинальном режиме их работы в зависимости от номинальной мощности
5) потерь на возбуждение, причем к последним относятся не только потери в обмотке возбуждения, но и потери в возбудителе, если он посажен на один вал с синхронной машиной, и в регулировочных реостатах;
6) добавочных потерь при нагрузке, вызванных полями рассеяния статора.
Перечисленные потери в сумме (ΣР) составляют небольшую долю от коминальной мощности машины. Эта доля уменьшается с ростом ее мощности.
Коэффициент полезного действия (к. п. д.) синхронной машины определяется:
для генератора по формуле
Значения к. п. д. синхронных генераторов и двигателей отечественных заводов приведены на рис. 4-94.
Значения к. п. д. крупных гидрогенераторов колеблются в пределах 96— 98, турбогенераторов 97—98,8%.
74. Сельсин, призначення та принцип дії.
Сельси́н — Інформаційна електрична машина змінного струму, призначена для вироблення напруг, амплітуди і фази яких визначаються кутовим положенням ротора, і яка використовується як давач або приймач у системах дистанційної синхронної передачі кутових переміщень. [1]
Сельсини ( англ. self-synchronizing) мають здатність до самосинхронізації. Сельсин передачі працює як звичайна механічна передача, але крутильний момент між валами передається не зубцями трибів, а магнітним потоком безпосередньо.
В різних галузях промисловості, в системах автоматики і керування часто виникає необхідність синхронного і синфазного обертання або повороту двох і більше осей, механічно не з'єднаних (наприклад, на РЛС — радіолокаційних системах з обертальною антеною). Такі задачі вирішуються за допомогою систем синхронного зв'язку.
Найпростіший сельсин складається зі статора з трьохфазною обмоткою (схема включення — трикутник або зірка) і ротора з однофазною обмоткою. Два таких пристрої електрично з'єднуються відповідними виводами — статор зі статором і ротор з ротором. На ротори подається однакова змінна напруга. За таких умов обертання ротора одного сельсину визиває поворот ротора другого сельсину. При повороті одного з сельсинів (сельсин-давача) на якийсь кут в ньому наводиться ЕРС, відмінна від початкової. Така ж ЕРС буде виникати і в другому сельсині (сельсині-приймачі) і по правилу лівої руки він відхилиться на той же кут.