
- •1.Загальні відомості про електричне поле. Основні характеристики електричного поля
- •2. Визначення індуктивності, опору, напруги, електрична ємність. З'єднання конденсаторів.
- •3. Лінійні електричні кола постійного струму. Джерело струму, з'єднувальні дроти, приймачі.
- •4. Режим роботи електричного кола. Послідовне, паралельне та змішане з'єднання резисторів.
- •5. Втрата напруги. Втрата напруги у лініях.
- •6. Закон Ома та закон Кірхгофа.
- •7. Розрахунок електричного кола методом згортання.
- •8. Розрахунок складного електричного кола методом двох вузлів, еквівалентного генератора та методом контурних струмів.
- •9. Магнітне поле, його характеристики.
- •10. Магнітне поле дроту зі струмом, закон Ома для магнітного кола. Електромагнітна сила.
- •11. Феромагнетики, явище Гістерезисна, магнітне коло, та його розрахунки.
- •12. Явище електромагнітної індукції. Явище самоіндукції.
- •13. Початкові відомості про змінний струм, векторна діаграма.
- •14. Кола змінного струму з r, l, c. Векторні діаграми, трикутники потужностей, опорів та напруг.
- •20. Паралельне з'єднання кола змінного струму з r, l, c, метод розрахунку. Паралельне з'єднання
- •21. Трифазні кола змінного струму. Одержання трифазного струму
- •22. З'єднання трифазних споживачів у зірку. Основні співвідношення, векторні діаграми.
- •23. З'єднання трифазних споживачів у трикутник. Основні співвідношення, векторні діаграми
- •24. Електричні вимірювання. Основні метрологічні поняття. Методи вимірювання.
- •25. Улаштування електровимірювальних приладів. Класифікація електровимірювальних приладів.
- •26. Вимірювальний механізм приладів. Електротехнічні виміри.
- •27. Вимірювання струму та напруги.
- •28. Вимірювання потужності трифазного кола.
- •Метод двох приладів. Цей метод застосовується в асиметричних трьохдротяних ланцюгах трифазного струму.
- •Метод трьох приладів. В тому разі коли несиметричне навантаження включається зіркою з нульовим дротом, тобто коли є асиметрична трифазна чотирьохдротяна система, застосовуються три ватметри.
- •29. Вимірювання опору. Прямі та непрямі методи вимірювання
- •30. Призначення трансформаторів. Улаштування та режим роботи.
- •31. Утрати в трансформаторах, та способи їх уникнення.
- •32. Робота трансформатора під навантаженням. Ккд трансформатора. Режим навантаження
- •Ккд трансформатора
- •33. Робота трансформатора на холостому ході. Режим холостого ходу
- •34. Режим короткого замикання у трансформатора. Режим короткого замикання
- •35. Паралельна робота трансформаторів. Вимоги паралельної роботи трансформаторів.
- •36. Трифазний трансформатор. Улаштування та режим роботи.
- •37. Вимірювальні трансформатори, призначення, улаштування та принцип дії.
- •38. Автотрансформатор, призначення, улаштування та принцип дії. Автотрансформатор
- •39. Електричні машини постійного струму. Загальні відомості, призначення та принцип дії.
- •40. Будова машини постійного струму та принцип дії.
- •41. Реакція якоря машини постійного струму.
- •42. Комутація машин постійного струму.
- •43. Способи збудження машини постійного струму.
- •44. Генератор постійного струму. Класифікація схеми підключення обмоток збудження машин постійного струму.
- •49. Універсальні колекторні двигуни.
- •50. Тахогенератор постійного струму, призначення, будова та принцип дії.
- •51. Асинхронний лінійний двигун, призначення, будова та принцип дії.
- •52. Виконавчі двигуни постійного струму, призначення, будова та принцип дії.
- •53. Асинхронні тахогенератори, призначення, будова та принцип дії.
- •54. Синхронні виконавчі двигуни (крокові двигуни), призначення, будова та принцип дії.
- •Переваги:
- •Недоліки:
- •55. Синхронні реактивні двигуни, призначення, будова та принцип дії.
- •56. Електричні машини змінного струму. Загальні відомості, призначення та принцип дії.
- •57. Визначення та конструктивна схема асинхронної машини.
- •58. Сполучення фаз обмотки статора зіркою та трикутником в асинхронних машинах, види роторів ад. Короткозамкнутый ротор
- •Фазный ротор
- •59. Принцип роботи асинхронних двигунів, ковзання та коефіцієнт трансформації ад.
- •60. Електромагнітний момент асинхронного двигуна.
- •61. Енергетична діаграма та ккд ад.
- •62. Асинхронні конденсаторниі двигуни, принцип дії, пристрій та призначення.
- •63. Будова та принцип роботи синхронної машини, переваги та недоліки синхронної машини.
- •Синхронный двигатель имеет ряд преимуществ перед асинхронным:
- •Недостатки синхронного двигателя:
- •64. Режим генератора та режим двигуна синхронної машини. Двигательный принцип
- •Генераторный режим
- •65. Реакція якоря синхронної машини.
- •66. Електромагнітний момент та кутова характеристика синхронної машини.
- •67. Характеристики синхронних генераторів.
- •68. Паралельна робота синхронних генераторів.
- •69. Безконтактні синхронні генератори, принцип дії та пристрій
- •70. Характеристики синхронних двигунів.
- •2. Характеристики синхронних двигунів
- •71. Пуск синхронного двигуна. Пуск синхронного двигателя
- •72. Синхронні компенсатори.
- •73. Втрати та ккд синхронної машини.
- •74. Сельсин, призначення та принцип дії.
- •75. Електромагнітні перетворювачі, призначення та принцип дії.
Переваги:
Кут повороту двигуна пропорційний кількості вхідних імпульсів.
Двигун працює з повним моментом у стані спокою (якщо обмотки підключені до живлення).
Прецезійне позиціонування і повторюваність кроку — хороші крокові двигуни мають точність близько 3 — 5% кроку і ці помилки не накопичується від кроку до кроку.
Можливість швидкого розгону, гальмування і зміни напряму руху.
Безвідмовність — у зв'язку з відсутністю щіток. Довговічність двигуна залежить тільки від довговічності підшипників.
Залежність оборотів двигуна від дискретних імпульсів дозволяє керувати двигуном без зворотного зв'язку, завдяки чому кроковий двигун простіший і дешевший в керуванні.
Можливість досягнення дуже низьких швидкостей обертання з навантаженням закріпленим безпосередньо на осі двигуна.
Широкий діапазон швидкостей обертання отримуваний завдяки тому, що швидкість пропорційна частоті вхідних імпульсів.
Недоліки:
Механічний резонанс з'являється при неправильному керуванні.
Складнощі при роботі з дуже високими швидкостями.
Можлива втрата контролю положення із-за роботи без зворотного зв'язку.
Споживання електроенергії не зменшується навіть без навантаження.
Невисока питома потужність.
Відносно складна схема управління.
55. Синхронні реактивні двигуни, призначення, будова та принцип дії.
Синхронні реактивні двигуни - Синхронний двигун, нароторе якого відсутня обмотка порушення, називається синхронним реактивним двигуном.
Ротор синхронного реактивного двигуна виготовляється зферромагнитного матеріалу має потягнутиявновираженние полюси.Вращающееся магнітне полістаторанамагничивает ротор.Явнополюсний ротор має неоднакові магнітні опору подовжньої і поперечної осях полюси. Силові лінії магнітного полястатора вигинаються, прагнучи подолати на шляху із меншим магнітним опором. Деформація магнітного поля викликає, внаслідок пружних властивостей силових ліній, реактивний момент, поводить ротор одночасно з полемстатора.
!!!!!!!!!!!!!!!!!!!!!!!!
56. Електричні машини змінного струму. Загальні відомості, призначення та принцип дії.
!!!!!!!!!!!!!!!!!
57. Визначення та конструктивна схема асинхронної машини.
Асинхро́нна маши́на (грец. α — не і συγχρονος — одночасний) — електрична машина змінного струму, у якої швидкість обертання ротора не дорівнює швидкості обертання магнітного поля статора (асинхронна).
Розрізняють колекторні і безколекторні (індукційні), однофазні і багатофазні асинхронні машини.
Найчастіше застосовуються трифазні асинхронні машини, які працюють як електродвигуни, потужністю від частки вата до десятків тисяч кіловат.
Застосування асинхронної машини як генератора дуже обмежене, оскільки треба мати джерело намагнічувального змінного струму, для утворення магнітного поля в машині. Крім того, важко регулювати напругу такого генератора. Асинхронні машини з живленням від однофазної мережі, широко застосовують у схемах автоматики і побутових приладах. Здебільшого, це двигуни малої потужності (мікродвигуни).