
- •Введение
- •Выбор системы электропривода
- •1.1 Общая характеристика крана и режима его работы
- •1.2 Требования к электроприводу
- •Расчёт мощности и выбор электродвигателя
- •- Масса груза;
- •Частота свободных колебаний груза равна
- •В итоге время движения на пониженной скорости
- •1.4. Технико-экономическое обоснование и выбор варианта электропривода
- •2. Разработка системы управления электропривода
- •2.1 Разработка силовой схемы и выбор основных элементов
- •2.2. Расчет и построение статических характеристик в разомкнутой системе
- •2.3. Синтез системы автоматического регулирования
- •2.4 Расчёт и построение статических характеристик замкнутой системы
- •3.1. Математическое описание электропривода
- •3.2. Анализ динамических свойств системы частотным методом
- •3.3 Расчет и построение переходных процессов
- •4. Разработка схемы управления электропривода
- •4.1. Разработка схемы управления и описание ее работы
- •4.2. Составление спецификации на основное электрооборудование
- •4.3 Конструкторская разработка
- •4.3.1. Технические требования
- •4.3.2. Разработка конструкции панели управления магнитного контроллера
- •5. Безопасность и экологичность проекта
- •5.1. Расчет заземления.
- •5.2 Инструкция по электробезопасности при эксплуатации устройства.
- •6. Оценка технико-экономической эффективности проектного решения
- •6.1. Определение объёма инвестиций и источников финансирования инвестиционного проекта
- •6.2. Расчёт стоимости продукции
- •6.3. Расчет дополнительных показателей для оценки эффективности инвестиционного проекта
- •6.4 Определение дисконтированного срока окупаемости
- •Список литературы
Введение
На темпы технической реконструкции хозяйства страны огромное влияние оказывает электронизация и комплексная автоматизация производства, повышение производительности и надежности машин. Это относится и к грузоподъемным машинам. Перед создателями кранов стоит ответственная задача освоения новых высокопроизводительных грузоподъемных механизмов, отвечающих мировому уровню, что в значительной степени зависит от качества электропривода.
Применение новых прогрессивных технологий ведет к повышению требований к крановому электроприводу, вследствие чего проблема создания простого, экономичного и надежного широкорегулируемого кранового электропривода становится весьма острой.
Особое значение имеет задача получения с помощью сравнительно простых средств хороших регулировочных свойств у асинхронного двигателя как наиболее широко распространенного в крановом электроприводе, простого и надежного в эксплуатации.
Вопросы регулирования скорости вращения асинхронных двигателей находятся постоянно в центре внимания исследователей. Это вызвано тем. что асинхронный двигатель гораздо легче и значительно дешевле двигателя постоянного тока при одинаковых мощности и скорости вращения. Однако регулирование скорости асинхронного двигателя связано с осложнениями, вытекающими из его физической сущности.
Наиболее часто регулирование скорости асинхронных двигателей осуществляется изменением сопротивления в роторной цепи, переключением числа пар полюсов, изменением частоты питающего напряжения и каскадным включением.
Анализ и сравнение различных способов регулирования обычно проводят основываясь на поведении электропривода в статических и динамических режимах. К основным показателям, характеризующим эти способы регулирования, относятся: диапазон регулирования, плавность, экономичность, возможность реверсирования и допустимая нагрузка при регулировании. Чтобы провести сравнение, далее приведена краткая характеристика нескольких способов регулирования.
Регулирование скорости асинхронных двигателей путем переключения числа пар полюсов обмотки статора. Этот метод обладает наименьшей плавностью и обеспечивает ступенчатое регулирование скорости с малым числом ступеней.
Регулирование скорости изменением сопротивления в роторной цепи с помощью релейно-контакторной аппаратуры. Данный метод дает возможность увеличить плавность регулирования, которая в этом случае определяется числом ступеней реостата. Однако увеличение числа ступеней с целью повышения плавности регулирования сопряжено с увеличением габаритов и стоимости переключающей аппаратуры. Поэтому в реальных установках плавность регулирования, а также и диапазон регулирования весьма ограничены.
Регулирование скорости в каскадных схемах. Этот способ наиболее экономичен при сохранении плавности, но применяется он в основном для электроприводов большой мощности с небольшим диапазоном регулирования.
Частотное регулирование. Перспективный метод, который наряду с преимуществами предыдущего способа имеет и больший диапазон регулирования. Широкое применение этого метода во многом зависит от используемого преобразователя частоты, который должен обладать высокой надежностью и дешевизной.
Проблема создания регулируемых асинхронных электроприводов решается в настоящее время путем дальнейшего развития и совершенствования различных способов управления асинхронного двигателями на базе использования последних достижений в области полупроводниковой техники. При этом наряду со сложными системами асинхронного электропривода, например с преобразователями частоты, получают свое дальнейшее развитие и более простые системы с потерей энергии скольжения, не предусматривающие регулирование скорости вращения магнитного поля статора.
Для кранов, а также для ряда других машин и механизмов, где в процессе выполнения производственного цикла требуется кратковременная работа на пониженной скорости, применение асинхронного электропривода с потерей энергии скольжения не приводит к существенному снижению циклового КПД электропривода, и он оказывается даже выше, чем у более дорогого частотного электропривода. Асинхронный электропривод с полупроводниковыми преобразователями частоты является в настоящее время достаточно сложным и дорогим, используется для кранов сравнительно редко и пока еще не может стать основой для создания массового кранового регулируемого электропривода.
Импульсное регулирование в цепи выпрямленного тока ротора. Весьма перспективным для кранов является асинхронный электропривод с импульсным регулятором в цепи выпрямленного тока ротора, обеспечивающим получение эффекта плавного регулирования активного сопротивления в цепи ротора и позволяющим реализовать автоматическое регулирование координат электропривода в замкнутой системе. В этом случае условия нагрева двигателя остаются такими же, как и при обычном реостатном регулировании. Наличие выпрямителя в роторе позволяет сравнительно просто выделить сигнал, близкий ЭДС ротора, и реализовать в замкнутой системе получение жестких характеристик без применения тахогенератора.
Традиционные способы управления момента и скорости в крановых электроприводах с помощью добавочных сопротивлений в цепи ротора и силовых контактных аппаратов не позволяют обеспечить плавное регулирование координат, устойчивые пониженные скорости, и при напряженной работе сопровождаются частым выходом из строя контактной аппаратуры.
Применение импульсного регулирования для крановых механизмов, имеющих асинхронный двигатель с фазным ротором, позволяет формировать оптимальные переходные процессы при высоких регулировочных свойствах электропривода (ЭП) и реализовать облегченный режим работы контакторов.
Таким образом, из всех рассмотренных выше способов регулирования наиболее походящим для механизма передвижения козлового крана является метод импульсного регулирования в цепи выпрямленного тока ротора.
Целью данного курсового проекта является: разработка асинхронного электропривода с импульсным управлением в цепи выпрямленного тока ротора для механизма передвижения козлового крана.