
- •1. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей.
- •1.1. Электрический заряд. Закон сохранения заряда
- •1.2. Закон Кулона
- •1.4.Принцип суперпозиции электрических полей
- •2. Работа перемещения электрического заряда в электростатическом поле. Циркуляция вектора напряженности электрического поля.
- •3. Потенциал и разность потенциалов. Напряженность как градиент потенциала.
- •4. Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Применение теоремы Остроградского-Гаусса к расчету поля бесконечной заряженной плоскости.
- •5. Свободные и связанные заряды. Полярные и неполярные молекулы. Поляризуемость молекулы. Типы диэлектриков. Поляризованность вещества.
- •6. Теорема Остроградского-Гаусса для электрического поля в диэлектрике. Электрическое смещение. Диэлектрическая проницаемость среды.
- •8. Электроемкость уединенного проводника. Взаимная емкость двух проводников. Конденсаторы.
- •9. Энергия заряженных уединенного проводника, конденсатора и системы проводников. Энергия электростатического поля. Объемная плотность энергии.
- •10. Постоянный электрический ток, его характеристики и условия существования. Классическая электронная теория (кэт) электропроводности металлов и ее опытное обоснование. Плотность тока по кэт.
- •11. Вывод закона Ома в дифференциальной форме из электронных представлений. Затруднения кэт.
- •12. Обобщенный закон Ома в интегральной форме. Разность потенциалов, электродвижущая сила, напряжение. Границы применимости закона Ома.
- •13Электрический ток в вакууме. Термоэлектронная эмиссия. Законы, описывающие электрический ток в вакууме. Электрический ток в вакууме.
- •Вольт-амперная характеристика вакуумного диода.
- •Вольт- амперная характеристика газов.
- •15. Магнитное поле. Магнитная индукция. Закон Ампера. Контур с током в магнитном поле.
- •16. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля кругового тока. Магнитный момент витка с током.
- •18. Действие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле.
- •19. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля. Работа перемещения проводника с током в магнитном поле.
- •20. Явление электромагнитной индукции. Опыты Фарадея. Правило Ленца. Закон электромагнитной индукции по Фарадею.
- •21. Индуктивность. Явление самоиндукции. Токи при замыкании и размыкании цепи.
- •22. Энергия проводника и системы проводников с током. Объемная плотность энергии магнитного поля.
- •23. Магнитное поле в веществе, микро - и макро токи. Магнитные моменты атомов. Типы магнетиков. Намагниченность.
- •24. Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость среды. Напряженность магнитного поля. Закон полного тока
- •25. Ферромагнетики. Опыты Столетова. Основная кривая намагничивания ферромагнетика. Магнитный гистерезис. Точка Кюри для ферромагнетика. Домены. Спиновая природа ферромагнетизма.
- •26. Основы теории Максвелла для электромагнитного поля. Ток смещения. Закон полного тока для магнитного поля по Максвеллу.
- •27. Система уравнений Максвелла в интегральной форме для электромагнитного поля.
- •28Гармонические колебания (механические и электромагнитные) и их характеристики
- •29 Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- •30 Пружинный, математический и физический маятники. Колебательный контур. Пружинный маятник
- •Математический маятник
- •Физический маятник
- •31 Энергия гармонических колебаний
- •32 Сложение гармонических колебаний одного направления и одинаковой частоты, условия усиления и ослабления.
- •33 Биения. Уравнение биений и его анализ.
- •34. Дифференциальное уравнение затухающих колебаний и его решение. Амплитуда и фаза собственных затухающих колебаний.
- •35. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Явление резонанса. Резонансная кривая. Резонансная частота.
- •36. Волна. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Синусоидальные (гармонические) волны. Уравнение бегущей волны. Длина волны и волновое число.
- •37. Энергия гармонической волны. Гармоническая волна. Волна, каждая точка которой, в пространстве совершает гармонические колебания.
- •38. Когерентность. Принцип суперпозиции волн. Интерференция волн. Условия усиления и ослабления.
- •39. Стоячая волна. Уравнение стоячей волны и его анализ.
- •40. Основные свойства электромагнитных волн. Монохроматическая волна.
- •]Стоячая монохроматическая волна
Вольт-амперная характеристика вакуумного диода.
электрический ток в вакууме может быть создан упорядоченным движением любых заряженных частиц (электронов, ионов).
14. Электрический ток в газе. Процессы ионизации и рекомбинации. Вольтамперная характеристика газового разряда. Самостоятельный и несамостоятельный разряды. Понятие о плазме.
Электрический ток в газах.
При нормальных условиях газы состоят из нейтральных молекул, а поэтому являются диэлектриками. Для ионизации молекул необходимо затратить энергию - энергию ионизации, количество которой зависит от рода вещества. Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами.
Следовательно, при ионизации появляются три типа носителей зарядов: положительные ионы, отрицательные ионы и электроны.
Под действием внешнего электрического поля ионы обоих знаков и электроны движутся в направлении действия сил электрического поля: положительные ионы к катоду, отрицательные ионы и электроны - к аноду. Т.е. электрический ток в газах - это упорядоченное движение ионов и электронов под действием электрического поля.
Вольт- амперная характеристика газов.
При малом напряжении сила тока мала, т.к. ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения между электродами скорость направленного движения электронов и ионов возрастает, поэтому большая часть заряженных частиц достигает электродов, а, следовательно возрастает сила тока.
. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2. Такой ток называют током насыщения.При напряжении U2 в несколько тысяч вольт скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда кинетическая энергия достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют ихПрохождение электрического тока без воздействия внешнего ионизатора называют самостоятельным разрядом.
15. Магнитное поле. Магнитная индукция. Закон Ампера. Контур с током в магнитном поле.
Магнитное поле создается в пространстве вокруг движущихся электрических зарядов или постоянных токов.
Основной характеристикой магнитного поля является вектор магнитной индукции В. Условились считать, что вектор магнитной индукции В в произвольной точке поля совпадает по направлению с силой, действующей на северный полюс бесконечно малой магнитной стрелки, помещенной в эту точку поля.
Закон Ампера устанавливает, что сила F, которая действует на прямолинейный проводник с током, находящийся в однородном магнитном поле В, прямо пропорциональна силе тока I в проводнике, его длине l , магнитной индукции В и синусу угла α между направлением тока в проводнике и вектором В: F = IB l sin α . В случае неоднородного магнитного поля и проводника произвольной формы закон Ампера легко обобщить для бесконечно малого элемента проводника dl : dF = I B dl sin α, dF – сила, действующая на элемент проводника длиной dl , α – угол между векторами dl и В. В векторной форме закон Ампера dF = I [dl В]. Взаимное расположение векторов dF , dl ,