Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА2.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
539.14 Кб
Скачать

32 Сложение гармонических колебаний одного направления и одинаковой частоты, условия усиления и ослабления.

Под сложением колебаний понимают нахождение уравнения результирующих колебаний системы в тех случаях, когда эта система одновременно участвует в нескольких колебательных процессах.

.

Когерентными называются колебания, для которых разность фаз постоянна.

Гармонические колебания с одинаковыми частотами являются когерентными.

При сложении гармонических колебаний одного направления и одинаковой частоты результирующее колебание также является гармоническим.

Различают два случая.

  1. Разность фаз складываемых колебаний равна нулю или четному числу π

, где n=0, 1, 2, 3… (7)

В этом случае при любом целочисленном значении n и по формуле (3) получим для результирующей амплитуды

Ар = А1 + А2.

Таким образом, при выполнении условия (7) колебания совершаются в одинаковой фазе и усиливают друг друга. Поэтому условие (7) называютусловием усиления колебаний одного направления при их сложении.

  1. Разность фаз складываемых колебаний равна нечетному числу π

, где n=0, 1, 2, 3… (8)

В этом случае при любом целочисленном значении n и по формуле (3) получим для результирующей амплитуды

Ар = |А1–А2|.

Таким образом, при выполнении условия (8) колебания совершаются в противофазе и ослабляют друг друга. Поэтому условие (8) называютусловием ослабления колебаний одного направления при их сложении.

33 Биения. Уравнение биений и его анализ.

При сложении колебаний одного направления, но с неодинаковыми частотами разность фаз ΔФ (формула 6) будет изменяться с течением времени. Каждый из векторов А1 и А2 будет вращаться с разной скоростью и амплитуда результирующих колебаний будет изменяться с течением времени. В этом случае колебания не будут когерентными, и результирующее колебание не будет гармоническим. При большом отличии значений частот ω1иω2 получается довольно сложное результирующее колебание. Например, при ω1=9ω2 график результирующего колебания имеет вид, показанный на рисунке.

Большой практический интерес представляет собой сложение гармонических колебаний одного направления с близкими частотами. Для простоты рассмотрим колебания с одинаковыми амплитудами А1 = А2 = А и начальными фазами, равными нулю . В этом случае уравнение результирующих колебаний будет иметь следующий вид (уравнение биений)

. (9)

. (12)

Рассмотренные колебания называются биением, а (12) называется уравнением биений.

Биением называется явление периодического изменения амплитуды результирующих колебаний, возникающее при сложении двух гармонических колебаний одного направления с близкими частотами.

Значение частоты Ωб, равное разности частот ω1иω2 складываемых колебаний

периода биений

. (14)

Из формулы (13) видно, что по мере сближения частот ω1иω2 частота биений уменьшается, обращаясь в ноль приω1=ω2. На этом основан один из точных методов определения частоты неизвестных колебаний. В этом методе неизвестные колебания складываются с колебаниями регулируемой частоты, и измеряется частота биений. Неизвестную частоту определяют по исчезновению биений.