
- •1. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей.
- •1.1. Электрический заряд. Закон сохранения заряда
- •1.2. Закон Кулона
- •1.4.Принцип суперпозиции электрических полей
- •2. Работа перемещения электрического заряда в электростатическом поле. Циркуляция вектора напряженности электрического поля.
- •3. Потенциал и разность потенциалов. Напряженность как градиент потенциала.
- •4. Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Применение теоремы Остроградского-Гаусса к расчету поля бесконечной заряженной плоскости.
- •5. Свободные и связанные заряды. Полярные и неполярные молекулы. Поляризуемость молекулы. Типы диэлектриков. Поляризованность вещества.
- •6. Теорема Остроградского-Гаусса для электрического поля в диэлектрике. Электрическое смещение. Диэлектрическая проницаемость среды.
- •8. Электроемкость уединенного проводника. Взаимная емкость двух проводников. Конденсаторы.
- •9. Энергия заряженных уединенного проводника, конденсатора и системы проводников. Энергия электростатического поля. Объемная плотность энергии.
- •10. Постоянный электрический ток, его характеристики и условия существования. Классическая электронная теория (кэт) электропроводности металлов и ее опытное обоснование. Плотность тока по кэт.
- •11. Вывод закона Ома в дифференциальной форме из электронных представлений. Затруднения кэт.
- •12. Обобщенный закон Ома в интегральной форме. Разность потенциалов, электродвижущая сила, напряжение. Границы применимости закона Ома.
- •13Электрический ток в вакууме. Термоэлектронная эмиссия. Законы, описывающие электрический ток в вакууме. Электрический ток в вакууме.
- •Вольт-амперная характеристика вакуумного диода.
- •Вольт- амперная характеристика газов.
- •15. Магнитное поле. Магнитная индукция. Закон Ампера. Контур с током в магнитном поле.
- •16. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля кругового тока. Магнитный момент витка с током.
- •18. Действие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле.
- •19. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля. Работа перемещения проводника с током в магнитном поле.
- •20. Явление электромагнитной индукции. Опыты Фарадея. Правило Ленца. Закон электромагнитной индукции по Фарадею.
- •21. Индуктивность. Явление самоиндукции. Токи при замыкании и размыкании цепи.
- •22. Энергия проводника и системы проводников с током. Объемная плотность энергии магнитного поля.
- •23. Магнитное поле в веществе, микро - и макро токи. Магнитные моменты атомов. Типы магнетиков. Намагниченность.
- •24. Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость среды. Напряженность магнитного поля. Закон полного тока
- •25. Ферромагнетики. Опыты Столетова. Основная кривая намагничивания ферромагнетика. Магнитный гистерезис. Точка Кюри для ферромагнетика. Домены. Спиновая природа ферромагнетизма.
- •26. Основы теории Максвелла для электромагнитного поля. Ток смещения. Закон полного тока для магнитного поля по Максвеллу.
- •27. Система уравнений Максвелла в интегральной форме для электромагнитного поля.
- •28Гармонические колебания (механические и электромагнитные) и их характеристики
- •29 Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- •30 Пружинный, математический и физический маятники. Колебательный контур. Пружинный маятник
- •Математический маятник
- •Физический маятник
- •31 Энергия гармонических колебаний
- •32 Сложение гармонических колебаний одного направления и одинаковой частоты, условия усиления и ослабления.
- •33 Биения. Уравнение биений и его анализ.
- •34. Дифференциальное уравнение затухающих колебаний и его решение. Амплитуда и фаза собственных затухающих колебаний.
- •35. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Явление резонанса. Резонансная кривая. Резонансная частота.
- •36. Волна. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Синусоидальные (гармонические) волны. Уравнение бегущей волны. Длина волны и волновое число.
- •37. Энергия гармонической волны. Гармоническая волна. Волна, каждая точка которой, в пространстве совершает гармонические колебания.
- •38. Когерентность. Принцип суперпозиции волн. Интерференция волн. Условия усиления и ослабления.
- •39. Стоячая волна. Уравнение стоячей волны и его анализ.
- •40. Основные свойства электромагнитных волн. Монохроматическая волна.
- •]Стоячая монохроматическая волна
29 Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
Тогда
дифференциальное уравнение колебаний
заряда Q
в простейшем контуре, используя (3), можно
записать как
Зная
формулу циклической частоты свободных
колебаний колебательного контура и
формулу предыдущего раздела (11), придем
к дифференциальному уравнению
(4)
Колебания,
которые возникают под действием внешней
периодически изменяющейся силы или
внешней периодически изменяющейся
э.д.с., называются соответственно вынужденными
механическими и вынужденными
электромагнитными колебаниями.
Уравнения
(2) и (4) приведем к линейному неоднородному
дифференциальному уравнению
(5)
причем
далее мы будем применять его решение
для вынужденных колебаний в зависимости
от конкретного случая (x0 если
механические колебания равно F0/m,
в случае электромагнитных колебаний -
Um/L).
30 Пружинный, математический и физический маятники. Колебательный контур. Пружинный маятник
Пружинный
маятник —
это груз массой т,
подвешенный на абсолютно упругой пружине
и совершающий гармонические колебания
под действием упругой
силы F = –kx, где k — жесткость
пружины. Уравнение движения маятника
Период колебаний пружинного маятника может быть вычислен по следующей формуле:
,
где
—
масса груза,
— жёсткость
пружины.
Математический маятник
Математический маятник — это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити
Период колебаний математического маятника:
где
—
длина подвеса (к примеру нити),
— ускорение
свободного падения.
Период колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью[5] равен 2 секундам.
Физический маятник
это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс тела
Период колебаний физического маятника:
где
— момент
инерции маятника
относительно оси вращения,
— масса маятника,
—
расстояние от оси вращения до центра
масс.
Колебательный контур
Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания
Резонансная частота контура определяется так называемой формулой Томсона:
31 Энергия гармонических колебаний
При механических колебаниях колеблющееся тело (или материальная точка) обладает кинетической и потенциальной энергией. Кинетическая энергия тела W:
(Скорость тела v = ds/dt)
Для вычисления потенциальной энергии тела воспользуемся самой общей формулой, связывающей силу и потенциальную энергию тела в поле этой силы:
где U - потенциальная энергия, набираемая (или теряемая) телом, движущимся в силовом поле F от точки 0 (точки, в которой потенциальная энергия принимается равной 0) до точки х.
|
|
1.
Полная механическая энергия тела не
изменяется при колебаниях:
2.
Частота колебаний кинетической и
потенциальной энергии в 2 раза больше
частоты колебаний маятника.
3.
Колебания кинетической и потенциальной
энергии сдвинуты друг относительно
друга по фазе на (на
полпериода). Когда кинетическая энергия
достигает максимума, потенциальная -
минимума (нуля) и наоборот. Энергия при
колебаниях постоянно перекачивается
из потенциальной в кинетическую и
обратно.
выводы:
1.
Полная энергия в контуре остается
неизменной:
2. Частота колебаний энергий в 2 раза превосходит частоту колебаний заряда и тока в контуре. 3. Электрическая и магнитная энергии сдвинуты по фазе на полпериода друг относительно друга; происходит непрерывное перекачивание энергии из одной формы в другую и обратно.
Поскольку в контуре происходят колебания электрической и магнитной энергий, электрический колебательный контур также называют электромагнитным.