
- •Генетический d- ряд сахаров
- •1.2 Усвояемые углеводы
- •Сложные углеводы
- •[Править]Суточная норма витамина d
- •[Править]Функции
- •[Править]Формы
- •[Править]Источники
- •[Править]Функции
- •[Править]Суточная потребность
- •[Править]Неравнозначность ретиноидов и каротиноидов
- •[Править]Классификация ферментов
- •Применение [править]Фармакология
- •[Править]Пищевая промышленность
- •[Править]Фотография
- •[Править]Получение
- •[Править]Биологическая роль
- •[Править]Авитаминоз и гипервитаминоз
- •[Править]Суточная норма потребления
- •[Править]Медицинское применение [править]Фармакодинамика
- •[Править]Фармакокинетика
- •[Править]Взаимодействие
- •Биологически активные добавки
- •[Править]Источники витамина с
- •[Править]Биологическая роль
- •[Править]Применение
Сложные углеводы
Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.
К
рахмал
– основной из перевариваемых
полисахаридов. На
его долю приходится до 80% потребляемых
с пищей углеводов.
Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе ( ядрице ) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 ( ржаная ) до 68% ( пшеничная высшего сорта ). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят кзернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука ( 10-15,5% ). По причине высокого содержания крахмала в картофеле ( 15-18% ) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.
В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы - инулина.Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики ( напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара ).
Гликоген - «животный крахмал» - состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах ( в печени 2-10%, в мышечной ткани – 0,3-1% ).
9Коллоидные растворы, их характеристика и роль в организме.
Свойства растворов ВМС, характерные для коллоидных растворов:
• размер частиц (молекул ВМС) соответствует размеру коллоидных
частиц (10–7 – 10–9 м);
• растворы ВМС не проходят через полупроницаемые мембраны;
• явление светорассеивания (размытый конус Тиндаля);
• способность к коагуляции;
• медленно диффундируют
Биологические жидкости: кровь, плазма, лимфа, спинномозговая жидкость, ядерный сок, цитоплазма. С химической точки зрения организм в целом - это сложнейшая совокупность многих коллоидных систем. В состав любого живого организма входят твердые, жидкие и газообразные вещества, находящиеся в сложном взаимоотношении с окружающей средой. Цитоплазма клеток обладает свойствами, характерными, как для жидких, так и студнеобразных веществ.
Большое значение имеют коллоидные системы не только для биологии, но и для медицины, косметологии, пищевой промышленности.
10Высшие жирные кислоты в составе липидов и их влияние на физические и химические свойства. Место и роль липидов в организме.
11 Гликогенез. Анаэробная и аэробная фазы окисления глюкозы. Пути активизации и мобилизации углеводов.
Гликогенез Гликогенез - биохимическая реакция протекающая в основном в печени и мышцах в результате которой глюкоза превращается в гликоген. Это очень важная биологическая реакция так как глюкоза является основным источником энергии в организме, а гликоген это форма хранения глюкозы в клетке на случай энергетических затрат между приемами пищи. Гликогенез это только один из этапов сложного превращения углеводов в организме. В целом это происходит следующим образом: Во время приема пищи углеводы, к которым в первую очередь относится крахмал, а также дисахариды сахароза, лактоза и мальтоза, под действием фермента слюны амилазы расщепляются на менее крупные чем крахмал молекулы. Далее в тонком кишечнике уже другие ферменты (панкреатическая амилаза, сахараза, мальтаза и лактаза) гидролизируют углеводные остатки до моносахаридов, одним из которых является глюкоза. Затем половина всосавшейся глюкозы поступает в печень, а остальная часть транспортируется в остальные ткани. Поступление глюкозы в клетки во многих органах регулируется инсулином, за исключением печени и мозга где скорость диффузии зависит только от концентрации глюкозы. В клетках происходит распад глюкозы - гликолиз. Гликолиз может происходить с участием кислорода (аэробный процесс), тогда в результате образуется две молекулы пирувата, и без участия кислорода (анаэробный процесс), в этом случае образуются две молекулы лактата. В случае аэробного процесса пируват в конечном итоге окисляется до углекислого газа и воды. А анаэробный процесс включает те же реакции что и аэробный, только в конце пируват превращается в лактат. В результате распада глюкозы с участием кислорода образуется 38 молекул АТФ - источника энергии в живых организмах, а после анаэробного гликолиза всего 2 молекулы АТФ. Смысл этого заключается в том, что анаэробный процесс протекает в мышцах в начале интенсивной физической нагрузки когда снабжение кислородом ограничено. Часть попадающей с пищей глюкозы не идет на образование АТФ, а откладывается про запас в виде гликогена у животных и в виде крахмала у растений. Гликоген и крахмал это разветвленные цепочки из молекул глюкозы. Процессгликогенеза, т.е. образование гликогена из глюкозы представляет собой процесс полимеризации, т.е происходит последовательное присоединение друг к другу мономеров глюкозы и образование полисахаридной цепи гликогена. Мышечный гликоген является источником глюк озы для самой мышечной клетки, а печеночный поддерживает физиологическую концентрацию глюкозы в крови.
12/Темновые реакции фотосинтеза.
13Белки- основной строительный материал живого организма. свойства аминокислот. Формирование структуры белковых молекул.
БЕЛКИ – класс биологических полимеров, присутствующих в каждом живом организме. С участием белков проходят основные процессы, обеспечивающие жизнедеятельность организма: дыхание, пищеварение, мышечное сокращение, передача нервных импульсов. Костная ткань, кожный, волосяной покров, роговые образования живых существ состоят из белков. Для большинства млекопитающих рост и развитие организма происходит за счет продуктов, содержащих белки в качестве пищевого компонента. Роль белков в организме и, соответственно, их строение весьма разнообразно.
Состав белков. Все белки представляют собой полимеры, цепи которых собраны из фрагментов аминокислот. Аминокислоты – это органические соединения, содержащие в своем составе (в соответствии с названием) аминогруппу NH2и органическую кислотную, т.е. карбоксильную, группу СООН. Из всего многообразия существующих аминокислот (теоретически количество возможных аминокислот неограниченно) в образовании белков участвуют только такие, у которых между аминогруппой и карбоксильной группой – всего один углеродный атом. В общем виде аминокислоты, участвующие в образовании белков, могут быть представлены формулой: H2N–CH(R)–COOH. Группа R, присоединенная к атому углерода (тому, который находится между амино- и карбоксильной группой), определяет различие между аминокислотами, образующими белки. Эта группа может состоять только из атомов углерода и водорода, но чаще содержит помимо С и Н различные функциональные (способные к дальнейшим превращениям) группы, например, HO-, H2N- и др. Существует также вариант, когда R = Н.
В
организмах живых существ содержится
более 100 различных аминокислот, однако,
в строительстве белков используются
не все, а только 20, так называемых
«фундаментальных». В табл. 1 приведены
их названия (большинство названий
сложилось исторически), структурная
формула, а также широко применяемое
сокращенное обозначение. Все структурные
формулы расположены в таблице таким
образом, чтобы основной
фрагмент
аминокислоты находился справа.
Таблица 1. АМИНОКИСЛОТЫ, УЧАСТВУЮЩИЕ В СОЗДАНИИ БЕЛКОВ. |
||
Название |
Структура |
Обозначение |
ГЛИЦИН |
|
ГЛИ |
АЛАНИН |
|
АЛА |
ВАЛИН |
|
ВАЛ |
ЛЕЙЦИН |
|
ЛЕЙ |
ИЗОЛЕЙЦИН |
|
ИЛЕ |
СЕРИН |
|
СЕР |
ТРЕОНИН |
|
ТРЕ |
ЦИСТЕИН |
|
ЦИС |
МЕТИОНИН |
|
МЕТ |
ЛИЗИН |
|
ЛИЗ |
АРГИНИН |
|
АРГ |
АСПАРАГИНОВАЯ КИСЛОТА |
|
АСП |
АСПАРАГИН |
|
АСН |
ГЛУТАМИНОВАЯ КИСЛОТА |
|
ГЛУ |
ГЛУТАМИН |
|
ГЛН |
ФЕНИЛАЛАНИН |
|
ФЕН |
ТИРОЗИН |
|
ТИР |
ТРИПТОФАН |
|
ТРИ |
ГИСТИДИН |
|
ГИС |
ПРОЛИН |
|
ПРО |
В международной практике принято сокращенное обозначение перечисленных аминокислот с помощью латинских трехбуквенных или однобуквенных сокращений, например, глицин – Gly или G, аланин – Ala или A. |
Среди этих двадцати аминокислот (табл. 1) только пролин содержит рядом с карбоксильной группой СООН группу NH (вместо NH2), так как она входит в состав циклического фрагмента.
Восемь аминокислот (валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин и триптофан), помещенные в таблице на сером фоне, называют незаменимыми, поскольку организм для нормального роста и развития должен постоянно получать их с белковой пищей.
Белковая молекула образуется в результате последовательного соединения аминокислот, при этом карбоксильная группа одной кислоты взаимодействует с аминогруппой соседней молекулы, в результате образуется пептидная связь –CO–NH– и выделяется молекула воды. На рис. 1 показано последовательное соединение аланина, валина и глицина.
14Механизмы образования и накопления энергии в гликолизе и цикле Кребса.
Цикл Кребса. Механизмы регуляции цикла. Энергетическая эффективность процесса, значение
В анаэробных условиях пировиноградная кислота (пируват) подвергается дальнейшим превращениям в ходе спиртового, молочнокислого и других видов брожений, при этом NADH используется для восстановления конечных продуктов брожения, регенерируя в окисленную форму. Последнее обстоятельство поддерживает процесс гликолиза, для которого необходим окисленный NAD + . В присутствии достаточного количества кислорода пируват полностью окисляется до С02 и Н20 в дыхательном цикле, получившем название цикла Кребса или цикла ди- и трикарбоновых кислот. Все участки этого процесса локализованы в матриксе или во внутренней мембране митохондрий. Непосредственно в цикле окисляется ле сам пируват, а его производное — ацетил-СоА. Таким образом, первым этапом на пути окислительного расщепления ПВК является процесс образования активного ацетила в ходе окислительного декарбоксилирования. Окислительное декарбоксилирование пирувата осуществляется при участии пируватдегидрогеназного мультифёрментного комплекса. В состав его входят три фермента и пять коферментов. Коферментами служат тиаминпирофосфат (ТПФ) — фосфорилированное производное витамина Вь липоевая кислота, коэнзим A, FAD и NAD+. Пируват взаимодействует с ТПФ (декарбоксилазой), при этом отщепляется С02 и образуется гидроксиэтильное производное ТПФ (рис. 4.2). Последнее вступает в реакцию с окисленной формой липоевой кислоты. Дисульфидная связь липоевой кислоты разрывается и происходит окислительно-восстановительная реакция: гидроксиэтильная группа, присоединенная к одному атому серы, окисляется в ацетильную (при этом возникает высокоэнергетическая тиоэфирная связь), а другой атом серы липоевой кислоты восстанавливается. Образовавшаяся ацетиллипоевая кислота взаимодействует с коэнзимом А, возникают ацетил- СоА и восстановленная форма липоевой кислоты. Водород липоевой кислоты переносится затем на FAD и далее на NAD + . В результате окислительного декарбоксилирования пирувата образуются ацетил-СоА, С02 и NADH.
Дальнейшее окисление ацетил-СоА осуществляется в ходе циклического процесса. Цикл Кребса начинается с взаимодействия ацетил-СоА с енольной формой щавелевоуксусной кислоты. В этой реакции под действием фермента цитратсинтазы образуется лимонная кислота. Следующий этап цикла включает две реакции и катализируется ферментом аконитазой, или аконитатгидратазой. В первой реакции в результате дегидратации лимонной кислоты образуется цис-аконитовая. Во второй реакции аконитат гидратируется и синтезируется изолимонная кислота. Изолимонная кислота под действием NAD- или NADP-зависимой изоцитратдегидрогеназы окисляется в нестойкое соединение — щавелевоянтарную кислоту, которая тут же декарбоксилируется с образованием а-кетоглутаровой кислоты (а-оксоглутаровой кислоты).
а-Кетоглутарат, подобно пирувату, подвергается реакции окислительного декарбоксилирования. а-Кетоглутаратдегидрогеназный мультиэнзимный комплекс сходен с рассмотренным выше пируватдегидрогеназным комплексом. В ходе реакции окислительного декарбоксилирования а-кетоглутарата выделяется С02, образуются NADH и сукцинил-СоА.
Подобно ацетил-СоА, сукцинил-СоА является высокоэнергетическим тиоэфиром. Однако если в случае с ацетил-СоА энергия тиоэфирной связи расходуется на синтез лимонной кислоты, энергия сукцинил-CoA может трансформироватся в образование фосфатной связи АТР. При участии сукцинил- СоА-синтетазы из сукцинил-СоА, ADP и Н3Р04 образуются янтарная кислота (сукцинат), АТР, регенерирует молекула СоА. АТР образуется в результате субстратного фосфорилирования.
На следующем этапе янтарная кислота окисляется до фумаровой. Реакция катализируется сукцинатдегидрогеназой, коферментом которой является FAD. Фумаровая кислота под действием фумаразы или фумаратгидратазы, присоединяя Н20, превращается в яблочную кислоту (малат). И, наконец, на последнем этапе цикла яблочная кислота с помощью NAD- зависимой малатдегидрогеназы окисляется в щавелевоуксусную. ЩУК, которая самопроизвольно переходит в енольную форму, реагирует с очередной молекулой ацетил-СоА и цикл повторяется снова.
Следует отметить, что большинство реакций цикла обратимы, однако ход цикла в целом практически необратим. Причина этого в том, что в цикле есть две сильно экзергонические реакции — цитратсинтазная и сукцинил-СоА-синтетазная.
На протяжении одного оборота цикла при окислении пирувата происходит выделение трех молекул С02, включение трех молекул Н2О и удаление пяти пар атомов водорода. Роль Н2О в цикле Кребса подтверждает правильность уравнения Палладина, который постулировал, что дыхание идет с участием Н2О, кислород которой включается в окисляемый субстрат, а водород с помощью «дыхательных пигментов» (по современным представлениям — коферментов дегидрогеназ) переносится на кислород .
Выше отмечалось, что цикл Кребса был открыт на животных объектах. Существование его у растений впервые доказал английский исследователь А. Чибнелл (1939).В растительных тканях содержатся все кислоты, участвующие в цикле; обнаружены все ферменты, катализирующие превращение этих кислот; показано, что малонат — ингибитор сункцинатдегидрогеназы — тормозит окисление пирувата и резко снижает поглощение 02 в процессах дыхания у растений. Большинство ферментов цикла Кребса
локализовано в матриксе митохондрий, аконитаза и сукцинатдегидрогеназа — во внутренней мембране митохондрии.
Энергетический выход цикла Кребса, его связь с азотным обменом. Цикл Кребса. играет чрезвычайно важную роль в обмене веществ растительного организма. Он служит конечным этапом окисления не только углеводов, но также белков, жиров и других соединений. В ходе реакций цикла освобождается основное количество энергии, содержащейся в окисляемом субстрате, причем большая часть этой энергии не теряется для организма, а утилизируется при образовании высокоэнергетических конечных фосфатных связей АТР.
Каков же энергетический выход цикла Кребса? В ходе окисления пирувата имеют место 5 дегидрирований, при этом получаются 3NADH, NADPH (в случае изоцитратдегидрогеназы) и FADH2. Окисление каждой молекулы NADH (NADPH) при участии компонентов электронтранспортной цепи митохондрий дает по 3 молекулы АТР, а окисление FADH2 — 2АТР. Таким образом при полном окислении пирувата образуются 14 молекул АТР. Кроме того, 1 молекула АТР синтезируется ; в цикле Кребса в ходе субстратного фосфорилирования. Следовательно, при окислении одной молекуйы пирувата может образоваться 15 молекул АТР. А поскольку в процессе гликолиза из молекулы глюкозы возникают две молекулы пирувата, их окисление даст 30 молекул АТР.
Итак, при окислении глюкозы в процессе дыхания при функционировании гликолиза и цикла Кребса в общей сложности образуются 38 молекул АТР (8 АТР связаны с глико- лизом). Если принять, что энергия третьей сложноэфирнои фосфатной связи АТР равняется 41,87 кДж/моль (10 ккал/моль), то энергетический выход гликолитического пути аэробного дыхания составляет 1591 кДж/моль (380 ккал/моль).
Регуляция цикла Кребса. Дальнейшее использование образующегося из пирувата ацетил-СоА зависит от энергетического состояния клетки. При малой энергетической потребности клетки дыхательным контролем тормозится работа дыхательной цепи, а следовательно, реакций ЦТК и образования интермедиатов цикла, в том числе оксалоацетата, вовлекающего ацетил-СоА в цикл Кребса. Это приводит к большему использованию ацетил-СоА в синтетических процессах, которые также потребляют энергию.
Особенностью регуляции ЦТК является зависимость всех четырех дегидрогеназ цикла (изоцитратдегидрогеназы, а-кетоглутаратдегидрогеназы, сукцинатдегидрогеназы, малатдегидрогеназы) от отношения [NADH]/[NAD + ]. Активность цитратсинтазы тормозится высокой концентрацией АТР и собственным продуктом — цитратом. Изоцитратдегидрогеназа ингибируется NADH и активируется цитратом. а-Кето- глутаратдегидрогеназа подавляется продуктом реакции — сукцинил-СоА и активируется аденилатами. Окисление сукцината сукцинатдегидрогеназой тормозится оксалоацетатом и ускоряется АТР, ADP и восстановленным убихиноном (QH2). Наконец, малатдегидрогеназа ингибируется оксалоацетатом и у ряда объектов — высоким уровнем АТР. Однако степень участия величины энергетического заряда, или уровня адениновых нуклеотидов, в регуляции активности цикла Кребса у растений до конца не выяснена.
Регулирующую роль может играть также альтернативный путь транспорта электронов в растительных митохондриях. В условиях высокого содержания АТР, когда активность основной дыхательной цепи снижена, окисление субстратов через альтернативную оксидазу (без образования АТР) продолжается, что поддерживает на низком уровне отношение NADH/NAD+ и снижает уровень АТР. Все это позволяет циклу Кребса функционировать.
15Витамины D, А. Структура. Химические свойства
Витамин D — группа биологически активных веществ (в том числе холекальциферол и эргокальциферол). Холекальциферол синтезируется под действием ультрафиолетовых лучей в коже и поступает в организм человека с пищей. Эргокальциферол может поступать только с пищей.
Витамины группы D являются незаменимой частью пищевого рациона человека. Суточная потребность (RDA) в возрасте от 1 до 70 лет (включая беременных и кормящих матерей) составляет 15 мкг холекальциферола или 600 ME (международных единиц)[1].
Сам витамин D (холекальциферол и эргокальциферол) на самом деле является провитамином. Для активации холекальциферол сначала должен превратиться в печени в 25-гидрокси-холекальциферол (сокращенно 25(HO)D), а затем в почках — в 1,25-дигидрокси-холекальциферол (кальцитриол). При оценке адекватности обеспечения конкретного человека витамином D, наиболее полезным и универсальным лабораторным показателем является концентрация 25-гидрокси-холекальциферола в сыворотке крови[2]. Её минимальное значение, обеспечивающее оптимальное здоровье костей у большинства людей в популяции, составляет 20 нг/мл (50 нмоль/л)[1]. Однозначно установить дополнительную пользу от достижения значений выше 30 нг/мл (75 нмоль/л) в клинических исследованиях не удалось[1]. Тем не менее согласно некоторым рекомендациям, «оптимальным» считается интервал 30-60 нг/мл (75-150 нмоль/л)[3].
Растворим в жирах. Жиры также необходимы для адекватного всасывания этого витамина в кишечнике. Основным источником промышленного получения витамина D (эргостерола) служат дрожжи[4].
Дефицит витамина D — явление достаточно распространённое. В США, по данным[5] крупного популяционного исследования, проведенного в 2001—2006 годах, распространенность «риска дефицита» витамина D у взрослых и детей старше 1 года составила 8 %. К ней можно прибавить 24 % людей со статусом «риск неадекватного потребления». В сумме это почти треть населения США. В ряде других стран, с достаточным уровнем солнечного облучения, таких как Индия, Пакистан, Иран, Китай, значительная доля населения (по некоторым данным, до 60-80 %) имеют симптомы дефицита витамина D[6][7].
Однако, приводимые цифры распространенности «дефицита» витамина D могут значимо отличаться в зависимости от того, какой уровень 25-гидрокси-холекальциферола в крови берётся за пограничный (16, 20 или 30 нг/мл или какой-либо другой). Институт медицины США в 2010 году ввел новую классификацию адекватности статуса витамина D в зависимости от уровня 25-гидрокси-холекальциферола в сыворотке крови[1].
Категория статуса витамина D |
Уровень 25(HO)D (нг/мл) |
Уровень 25(HO)D (нмоль/л) |
риск дефицита |
< 12 |
< 30 |
риск неадекватного потребления |
12–19 |
30–49 |
достаточное потребление |
20–50 |
50–125 |
уровень, выше которого есть основание для обеспокоенности |
> 50 |
> 125 |
25(HO)D — концентрация 25-гидрокси-холекальциферола в сыворотке крови
Долговременный дефицит витамина D может приводить к увеличению заболеваемости раком[8], увеличивает вероятность развития остеопороза. Гиповитаминоз D играет основную роль в развитии рахита у детей.
Гипервитаминоз витамина D может вызывать нарушения метаболизма кальция, приводящие к гиперкальциемии и гиперкальциурии. При длительном лечении эргокальциферолом или холекальциферолом гиперкальциемия обычно обусловлена накоплением провитамина D3, но может быть вызвана одновременным избыточным потреблением пищевых продуктов, содержащих много кальция, например молочных продуктов[9].
Синтез в организме: предшественник холекальциферола — превитамин D3 образуется в эпидермисе кожи под воздействием ультрафиолетовых лучей солнечного света из провитамина D3. Превитамин D3 превращается в холекальциферол путем термической изомеризации (при температуре тела). В эпидермисе холекальциферол связывается с витамин-D-связывающим белком и в таком виде поступает в кровь и переносится в печень[9].
Животные: жирные сорта рыбы, рыбий жир; в значительно меньшей степени сливочное масло, сыр и другие жирные молочные продукты, яичный желток, икра[10]
Растительные: эргокальциферол образуется в клетках грибов из эргостерола. Основным источником эргокальциферола для человека являются некоторые виды грибов[11].
В расчете на 100 г, в печени животных содержится до 50 ME витамина, в сливочном масле — до 35 ME, в яичном желтке — 25 ME, в мясе — 13 ME, в кукурузном масле — 9 ME, в молоке — от 0,3 до 4 ME на 100 мл при суточной потребности человека 600 ME[12], поэтому даже при диете, ограниченной этими продуктами питания и лишенной жирной морской рыбы, без достаточного нахождения на солнце потребность организма в витамине D не может быть полностью обеспечена[13].