
- •Часть 1
- •Оглавление Список использованных сокращений 6 Введение 7
- •1. Эксплутационные требования к выключателям переменного высокого напряжения 9
- •4.2. Характеристики элегаза и его смесей применительно к использованию в дугогасительных устройствах 98
- •Список использованных сокращений
- •Введение
- •1. Эксплуатационные требования к выключателям переменного высокого напряжения
- •1.1. Номинальные параметры
- •1.2. Отключение коротких замыканий
- •1.3. Переходное восстанавливающееся напряжение
- •1.4. Предельная отключающая способность
- •1.5. Электродинамическая и термическая стойкость
- •1.6. Номинальные циклы операций. Коммутационный ресурс
- •1.7. Время электрической дуги отключения. Критические токи
- •1.8. Отключение малых емкостных и индуктивных токов
- •2. Электрическая дуга отключения в дугогасительных устройствах выключателей высокого напряжения
- •2.1. Основные принципы гашения электрической дуги отключения высокого напряжения
- •2.2. Характеристики электрической дуги отключения
- •2.3. Модели электрической дуги отключения
- •2.4. Постоянная времени дуги отключения
- •2.5. Характеристики электрической дуги отключения постоянного тока
- •2.6. Взаимодействие изоляционных элементов дугогасительных устройств с электрической дугой отключения
- •3. Воздушные выключатели высокого напряжения
- •Параметры некоторых отечественных воздушных выключателей
- •3.2. Характеристики сжатого воздуха применительно к использованию в дугогасительных устройствах
- •Разрядные напряжения для промежутков в сжатом воздухе
- •3.3. Характеристики воздушных дугогасительных устройств
- •3.4. Системы управления воздушными выключателями высокого напряжения
- •4. Элегазовые выключатели высокого напряжения
- •4.1. Номинальные параметры элегазовых выключателей высокого напряжения
- •4.2. Характеристики элегаза и его смесей применительно к использованию в дугогасительных устройствах
- •4.3. Динамические характеристики элегазовых дугогасительных устройств
- •5. Масляные и маломасляные выключатели высокого напряжения
- •5.1. Номинальные параметры масляных и маломасляных выключателей высокого напряжения
- •5.2. Характеристики масел применительно к использованию в дугогасительных устройствах
- •5.3. Динамические характеристики масляных и маломасляных дугогасительных устройств
- •Критические токи для ду
- •Мощность дуги
- •6. Вакуумные выключатели высокого напряжения
- •6.2. Характеристики вакуумных дугогасительных устройств
- •6.3. Контактные системы вакуумных дугогасительных устройств
- •Библиографический список
- •Приложение 1 нормированные характеристики переходного восстанавливающегося напряжения для выключателей высокого напряжения
- •Нормированные характеристики пвн для выключателей с номинальным напряжением от 3 до 35 кВ
- •Нормированные характеристики пвн для выключателей с номинальным напряжением 110 -750 кВ
- •Номинальные характеристики пвн для генераторных выключателей
- •Коммутационная способность выключателей
- •Восстановление напряжения на контактах дугогасительного устройства
- •Координация внешней и внутренней изоляции выключателей высокого напряжения
- •Апериодическая составляющая тока короткого замыкания
- •Характеристики идеальных сплошных сред
- •Термогазодинамические процессы в элементах газовых дугогасительных устройств выключателей высокого напряжения
- •Потери на трение по длине трубопровода
- •Тогда уравнение (п6.1) имеет вид
- •Характеристики элегазовых выключателей высокого напряжения
- •Выключатели фирмы «абб» серии hd4/c12,hd4/c17(hd4/c36)
- •Элегазовые выключатели оао «Электроаппарат»
- •Технические параметры элегазовых генераторных выключателей фирмы «абб» серий нgi, hek, hec
- •Приложение 8 нестационарные процессы в масляных и маломасляных дугогасительных устройствах
3.2. Характеристики сжатого воздуха применительно к использованию в дугогасительных устройствах
Номинальные параметры ВОВ соответствуют ГОСТ 52565-06. К специфическим номинальным (нормированным) параметрам, характерным для ВОВ (ВВ с двумя ступенями давления), следует отнести номинальное давление сжатого воздуха рном (высокое давление в баке ВОВ).
Номинальное давление сжатого воздуха (избыточные давления по манометру в мегапаскалях) — это давление, при котором определены условия гашения дуги и оперирования приводом ВОВ. Приведем принятые в России номинальные давления 0,5; 1,0; 1,6; 2,0; 2,6; 3,0; 4,0.
Важной характеристикой сжатого воздуха, применяемого для ВОВ, является его относительная влажность aвл. (%), определяемая как отношение количества влаги gвл, содержащегося в воздухе при данной температуре, к наибольшему количеству влаги g100, которое в нем может содержаться при этой же температуре (100 %-ная влажность):
aвл = gвл100/g100. (3.1)
При большой влажности сжатого воздуха и значительных перепадах температуры окружающего воздуха в течение короткого времени часть влаги может выпасть на изоляционных частях ВОВ и привести к перекрытию по поверхности.
На рис. 3.3 показано изменение относительной влажности сжатого воздуха aвл, измеренное в двух резервуарах (кривые 1 и 2) ВОВ при изменении температуры окружающего воздуха от – 1 до – 20°С в течение 5 суток. Влажность воздуха, подаваемого в ВОВ, составляла 50 %. Следует отметить, что ГОСТ 15150-69 нормирует более существенное изменение температуры, а именно, 40 К в течение 8 ч, и более низкий нижний предел температуры (до – 60°С). Из рис. 3.3 видно, что уже при окружающей температуре – 20°С часть водяных паров конденсируется, приводя к существенному ухудшению изоляции [2].
Влажность сжатого воздуха мало сказывается на разрядном напряжении Uпер в промежутке между электродами. Однако она существенно влияет на Uпер по поверхности изоляционных элементов конструкции ДУ во влажном сжатом воздухе. В частности, при значительном увлажнении поверхности изолятора поверхностная пленка влаги обусловливает возникновение токов утечки; из-за загрязнения образуются зоны низкой проводимости, между которыми возникает коронный разряд. Высокое содержание азота в сжатом воздухе приводит к образованию оксидов азота, которые, взаимодействуя с влагой, образуют азотную и азотистую кислоты. В результате увеличивается поверхностная проводимость. Процесс развивается лавинообразно и заканчивается перекрытием по поверхности.
Рис. 3.3. Изменение относительной влажности сжатого воздуха и температуры в резервуарах ВОВ при эксплуатации
В эксплуатации применяются три способа осушки воздуха, подаваемого в ВОВ: химический, абсорбционный и термодинамический.
Первый основан на пропускании влажного воздуха через химические осушители, содержащие влагопоглощающее вещество, например, силикагель, а второй — на пропускании воздуха через специальные, например, керамические фильтры. Оба способа включают в себя обязательный процесс регенерации влагопоглощающего вещества, обычно при помощи подогревателей. Из-за относительно низкой пропускной способности и сложности эксплуатации эти способы не получили широкого распространения, однако к преимуществам их следует отнести отсутствие необходимости компрессоров высокого давления. Более распространена термодинамическая сушка, заключающаяся в комбинированном охлаждении и затем в пропускании сжатого воздуха через редукторный клапан.
Электрическая прочность воздуха высокого давления. Электрическая прочность промежутков, находящихся в сжатом воздухе, существенно зависит от материала, площади и состояния контактов (чистоты обработки), от давления, степени очистки и т. д. Перечисленные выше факторы снижают электрическую прочность промежутка. От этих факторов зависят статистические характеристики разрядных напряжений, а также вольт-секундные характеристики.
Рис. 3.4. Разрядная напряженность сжатого воздуха для различных электродных систем от избыточного давления
Материал электродов практически начинает сказываться на разрядном напряжении при давлениях свыше 1 МПа. Материалы, наиболее широко применяемые для электродов при одинаковой их конфигурации и одном и том же размере промежутка, можно в порядке возрастания разрядного напряжения расположить в следующий ряд: алюминий, медь, никель, латунь и сталь. Сравнение средней разрядной напряженности Е в сжатом воздухе для электродов из стали и алюминия при изменении избыточного давления р приведено на рис. 3.4 (кривые 1 и 2 — постоянное напряжение, предварительная очистка камеры, электроды из нержавеющей стали и алюминия соответственно; кривые 3 и 4 — импульсное напряжение (1,5/40 мкс, максимальное значение) и напряжение 50 Гц (амплитуда) соответственно (значения Е соответствуют 50 % вероятности разряда), применены сетчато-войлочный фильтр, предварительная очистка камеры, латунные электроды, шлифованные наждачной бумагой; 5 — то же, что и 4, но без фильтра [2].
Очистка сжатого воздуха от механических примесей является весьма эффективным средством повышения его электрической прочности. Из сравнения кривых 4 и 5 на рис. 3.4 видно, что при давлении 1 МПа очистка сжатого воздуха увеличивает его электрическую прочность на 20 %, а при давлении 2 МПа это увеличение составляет уже примерно 70 %. Таким образом, эффективность очистки воздуха резко увеличивается с повышением его давления. В указанных случаях очистка воздуха осуществлялась сетчато-войлочным фильтром, установленным на входе в камеру, многократной продувкой камеры.
Влияние температуры на разрядное напряжение промежутка в сжатом воздухе между двумя симметричными полыми медными электродами диаметром 70/40 мм при атмосферном давлении, из которых один подвергался нагреву, показано в табл. 3.2. Как видно из таблицы, разрядное напряжение Uраз промежутка при повышении температуры t одного из электродов от 20 до 500°С снижается в 2,6 раза при длине промежутка l = 5,7 мм и в 2 раза при длине промежутка 30 мм.
Таблица 3.2